title

text

Shawn Kim
Shawn Kim Apposha CEO
: декабря
45 мин

Make Your PostgreSQL 10x Faster on Cloud in Minutes

Cloud storage has some unique characteristics compared to traditional storage mainly because it is virtualized and controlled by software. One example is that AWS EBS shows higher throughput with larger I/O size up to 256 KiB without hurting latency. Hence, a user can get only about 4 MiB/sec with 1,000 IOPS EBS volume if the I/O request size is 4 KiB, whereas a user can get about 250 MiB/sec if the I/O request size is 256 KiB. This is because EBS consumes one I/O in a given IOPS budget for every I/O request regardless of the I/O size (up to 256 KiB). Unfortunately, PostgreSQL cannot exploit the full potential of cloud storage because PostgreSQL has designed without considering the unique characteristics of cloud storage.

In this talk, I will introduce the AppOS extension that improves the throughput of a write-intensive workload by 10x by transparently making PostgreSQL cloud storage-native. AppOS works like a storage driver that efficiently exploits the characteristics of cloud storage, such as I/O size dependency to storage throughput and latency, atomic write support in cloud block storage, and fast, but non-durable local SSDs. To do this, AppOS comprises a Linux-compatible file I/O stack including virtual file system, page cache, block I/O layer, cloud storage driver. On top of the file I/O stack, syscall module supports registering pre- and post-handler for file I/O-related system calls in order to transparently work without modifying PostgreSQL codes.

I will focus on presenting key use cases and performance results of the AppOS extension after explaining the internals. Specifically, I will show the performance results of OLTP and some batch workloads using standard benchmarking tools like pgbench and sysbench. I will also present performance results and implications on multiple clouds including AWS, GCP, and Azure.

Слайды

Видео

Другие доклады

  • Esteban Zimányi
    Esteban Zimányi ULB Professor
    Mahmoud SAKR
    Mahmoud SAKR université libre de bruxelles Professor
    45 мин

    MobilityDB: Managing Mobility Data in PostgreSQL

    MobilityDB is an open source moving object database system (https://github.com/ULB-CoDE-WIT/MobilityDB). Its core function is to efficiently store and query mobility tracks, such as vehicle GPS trajectories. It implements the Moving Features specification from the Open Geospatial Consortium (OGC). MobiltyDB is engineered up from PostgreSQL and PostGIS, providing spatiotemporal data management via SQL. It thus integrates with the postgreSQL eco-system allowing for complex architectures such as mobility stream processing and cloud deployments.

    The presentation will explain the architecture of MobilityDB, its database types, indexes, and operations. We will highlight the PostgreSQL features that enable this extension, and the would like to have features. This presentation will be of special interest to the PostgreSQL community, and to professionals in the transportation domain.

  • Александр Никитин
    Александр Никитин ЗАО ЦФТ Администратор баз данных
    22 мин

    Миграция БД Zabbix c Oracle на PostgreSQL

    В докладе я расскажу о том, как появился Заббикс в нашей компании, как мы жили с Ораклом, почему мы приняли решение перейти на PostgreSQL, какие проблемы возникли у нас при переходе, а также какое ПО показалось нам удачным выбором для работы с PostgreSQL.

  • Pavel Stehule
    Pavel Stehule freelancer Независимый консультант и разработчик
    90 мин

    The possibilities of profiling plpgsql code - available tools

    I like stored procedures - it is great technology. But like any other technologies it allows to write not well optimized code. It is not easy to write optimized code, sql statements in complex large applications. On second hand, there are some tools, that can be used very easily, that can help. Postgres has built-in tracking functions possibility. There are PLProfiler and plpgsql_check. With these tools is easy work to detect slow part of applications.With this knowledge, the fix of performance issue is less magic.

  • Егор Рогов
    Егор Рогов Postgres Professional эксперт
    45 мин

    Статистика в ретроспективе

    Чтобы оптимизатор мог построить хороший план, он должен иметь представление о статистических свойствах данных, с которыми имеет дело. Любопытно посмотреть, как усложнялась со временем структура собираемой информации: на что оптимизатор опирался в былые времена и что есть в его распоряжении сейчас с выходом 12-й версии. Мы также поговорим о том, как и когда собирается статистика, как управлять этим процессом и нужно ли вообще об этом задумываться.