title

text

Михаил Цветков
Михаил Цветков
15:00 02 марта
45 мин

Технологии Intel для PostgreSQL

Расскажем о продуктах и решениях Intel для сегмента Data Platform Group: серверных процессорах Xeon 3rd Gen (4S Cooper Lake), памяти PMEm 200 Series, и FPGA.

Видео

Другие доклады

  • David Steele
    David Steele
    45 мин

    Лучшие практики для бэкапов с помощью pgBackRest

    Резервное копирование является важной частью любого решения для корпоративных баз данных, но оно часто выполняется плохо или вообще игнорируется, что может привести к потере данных в случае отказа оборудования или другого сбоя.

    В этом докладе мы рассмотрим лучшие практики резервного копирования баз данных и способы их реализации с помощью pgBackRest, в том числе:

    • архивирование и хранение журнала предзаписи (WAL);
    • частоту снятия резервных копий и срок их хранения;
    • достижение целей по времени / точке восстановления;
    • варианты конфигурации;
    • обоснование с точки зрения производительности.

  • Евгений Дюков
    Евгений Дюков
    Андрей Бородин
    Андрей Бородин
    45 мин

    Эксплуатация высокодоступных РСУБД с открытым исходным кодом в облачном окружении

    Системы высокой доступности стали крайне популярны в последние несколько лет: они играют решающую роль в построении надёжных систем из доступного аппаратного обеспечения. В докладе мы обратим внимание на некоторые тонкие моменты проектирования и эксплуатации таких систем. Кроме того, будут затронуты проблемы захвата изменений с кластера высокой доступности.

  • Christopher Travers
    Christopher Travers
    45 мин

    Когда всё идёт не так: как надо и как не стоит реагировать на инциденты при поддержке СУБД

    Однажды в Adjust мы столкнулись с проблемой скорого достижения предельного значения xid в очень централизованной базе данных из-за длительной остановки autovacuum. Поскольку мы заметили предупреждения за 5 часов до надвигающейся катастрофы, мы смогли минимизировать влияние проблемы на клиентов. Приходите на доклад, чтобы узнать, как мы использовали это время для подготовки и какие уроки это может преподать всем, кто сталкивается с необычными проблемами в больших базах данных.

  • Николай Самохвалов
    Николай Самохвалов
    45 мин

    Автоматическое тестирование изменений БД (DDL, DML)

    В высоконагруженном проекте любое изменение несёт в себе заметные риски сбоя или деградации производительности. Мы видим, как растёт сложность систем, количество серверов БД, релизов в неделю, автоматизация всего и вся в CI/CD pipelines, контейнерах, Kubernetes.

    Но вот когда речь заходит о тестировании изменений в БД — от банального добавления индекса до сложных, почти «хирургических» операций вроде замены в первичного ключа int4 на int8 в многотерабайтной таблице под нагрузкой — тут налицо отставание технологий и методологий. В лучшем случае изменения проверяются визуально, и тут уж всё зависит от опыта и усталости проверяющего.

    В докладе мы расскажем как мы (Postgres.ai) закрываем этот вопрос с помощью нашего решения Database Lab:

    • моментальная выдача независимых тонких клонов для многотерабайтных БД, готовых к проверкам,
    • интеграция в существующие CI/CD-инструменты и рабочий процесс,
    • сбор метрик, наиболее важных для принятия решения об одобрении/отклонении изменения (и даже автоматическое отклонения совсем опасных действий).