

Элегантный поиск ближайших соседей в PostgreSQL
С необходимостью эффективного поиска ближайших соседей можно встретиться в разных задачах, например, поиск ближайших к заданной точке объектов на карте. Задача, на непрограммистский взгляд кажущаяся тривиальной (действительно, человек довольно легко справляется с ней глядя на карту) , на самом деле не имеет общего и доступного решения, что приводит к головной боли разработчиков, которые придумывают ad hoc решения (вставляют костыли). Эти решения, обычно некрасивые, портят настроение творческой натуры программиста, которому требуется посещение пивной, чтобы пережить когнитивный диссонанс :)
Действительно, если у человека есть карта, у которой есть определенный масштаб, и характерный размер поля зрения, то у программиста есть только координаты заданной точки и множество точек, которых может быть очень много (миллиарды звезд !), и к которому может идти большое количество конкурентных запросов, причем не только на чтение. Язык SQL позволяет очень красиво записать запрос, но реальный план его выполнения удручает - требуется прочитать всю таблицу, вычислить все расстояния от заданной точки, отсортировать по убыванию и оставить требуемое количество записей. Наличие индексов не спасает, а только приводит к полному обходу поискового дерева и чтения всей таблицы в случайном порядке, что гораздо медленнее простого чтения таблицы.
В действительности, класс задач, в которых требуется эффективный поиск ближайших соседей, гораздо шире задач пространственного поиска, например, задачи классификации, задачи поиска очепяток, кластеризации, дедупликации данных. Все они могут сильно выиграть от поддержки эффективного поиска ближайших соседей в СУБД, которые являются в настоящее время де-факто стандартом хранения данных. Эффективный поиск означает быстрый, конкурентный, масштабируемый поиск и поддержку различных типов данных (возможно, нестандартных), что и было реализовано 11 лет назад в PostgreSQL. Я расскажу про его реализацию, современное состояние и примеры использования.