Повреждение данных: как его избежать, обнаружить и обеспечить восстановление
Повреждение данных в PostgreSQL может происходить по ряду причин, в числе которых аппаратные ошибки, программные сбои и ошибки пользователя. В данном докладе я расскажу о своём опыте работы с повреждёнными базами. В частности, я упомяну о частых причинах повреждения данных в базе, среди которых процедурные ошибки при снятии резервных копий или восстановлении из них. Также я остановлюсь на частых последствиях повреждения данных в базе - например, ошибках, которые говорят о несоответствии между таблицей и ее индексами либо таблицей и TOAST-таблицей. Также я уделю некоторое внимание техникам, которые используют для восстановления базы или исправления ошибок после повреждения данных, в том числе моему опыту использования pg_resetxlog. Основой для данного доклада послужили реальные кейсы, с которыми я сталкивался в ходе работы с клиентами EnterpriseDB. Надеюсь, что они будут полезны разработчикам PostgreSQL для возможных улучшений этой СУБД, а пользователи получат представление о том, как избежать повреждения данных, обнаруживать его, если оно произошло, и справляться с ним.
Видео
Другие доклады
-
Simon Riggs Enterprise DB Эксперт по PostgreSQL, ответственный за стратегическое развитие и технические коммуникации
PostgreSQL и стандарты SQL
PostgreSQL - одна из СУБД, в наибольшей степени соответствующая стандартам. В этом докладе будет рассмотрено влияние Постгреса на стандарт SQL и фичи из стандарта, которые были релизованы в Постгресе, в том числе фичи, планирующиеся в 14й и последующих версиях.
-
Daniel Westermann dbi services Principal Consultant
Как переносить данные из Oracle в PostgreSQL и обратно
Использование PostgreSQL стало обычным делом во множестве организаций. В большинстве случаев PostgreSQL устанавливают в дополнение к уже имеющимся СУБД Oracle, и довольно скоро возникает закономерный вопрос: как перебрасывать данные из Oracle в PostgreSQL и наоборот? Давайте перенесёмся в прошлое, в март 2001, когда вышло новое расширение SQL стандарта, определившее общие принципы создания API для управления внешними данными: SQL/MED (ISO/IEC 9075-9:2008). Сообщество PostgreSQL довольно быстро создало фреймворк для использования рекомендаций стандарта в виде так называемых обёрток сторонних данных (foreign data wrappers). Это случилось в 2011 с выходом PostgreSQL 9.1. С тех пор число обёрток сторонних данных постоянно растёт. Сегодня благодаря им PostgreSQL может интегрировать данные почти из любого внешнего источника, будь то обычные файлы, другие реляционные СУБД или даже неструктурированные данные. В рамках этого доклада мы рассмотрим обёртку сторонних данных для Oracle и то, как её можно использовать для получения данных из Oracle в PostgreSQL. Однако обратное тоже верно: данные из PostgreSQL также можно отправить в Oracle, и это может быть важно для соблюдения требований. Обещаю, что в докладе будет две части: слайды и много демонстраций.
-
Николай Самохвалов Nombox LLC Основатель
Автоматическое тестирование изменений БД (DDL, DML)
В высоконагруженном проекте любое изменение несёт в себе заметные риски сбоя или деградации производительности. Мы видим, как растёт сложность систем, количество серверов БД, релизов в неделю, автоматизация всего и вся в CI/CD pipelines, контейнерах, Kubernetes.
Но вот когда речь заходит о тестировании изменений в БД — от банального добавления индекса до сложных, почти «хирургических» операций вроде замены в первичного ключа int4 на int8 в многотерабайтной таблице под нагрузкой — тут налицо отставание технологий и методологий. В лучшем случае изменения проверяются визуально, и тут уж всё зависит от опыта и усталости проверяющего.
В докладе мы расскажем как мы (Postgres.ai) закрываем этот вопрос с помощью нашего решения Database Lab:
- моментальная выдача независимых тонких клонов для многотерабайтных БД, готовых к проверкам,
- интеграция в существующие CI/CD-инструменты и рабочий процесс,
- сбор метрик, наиболее важных для принятия решения об одобрении/отклонении изменения (и даже автоматическое отклонения совсем опасных действий).
-
Amit Kapila Fujitsu Senior Director
Как будет развиваться логическая репликация?
Логическая репликация в PostgreSQL доступна начиная с версии 10.0, и с каждым новым релизом она улучшается. Мы начнём доклад с обсуждения базовой архитектуры логической репликации в PostgreSQL, а затем перейдём к различным способам её использования.
Одним из недостатков логической репликации по сравнению с физической является невозможность репликации транзакции до момента коммита. Для транзакций, которые выполняются продолжительное время, это может привести к серьёзной задержке на стороне реплики. Мы обсудим, какое решение этой проблемы реализовано в PostgreSQL.
Мы также остановимся на других крупных разработках в области логической репликации, которые позволят осуществлять потоковую передачу транзакций в заранее заданное время. Это позволит реализовать логическую репликацию без конфликтов. Это также можно будет использовать для масштабирования чтения. Благодаря протоколу 2PC мы сможем убедиться, что реплики получили все данные, закоммиченные на мастере. Теперь мы можем спроектировать систему, где определённые узлы являются владельцами некоторого набора таблиц. Так мы всегда сможем получить данные этих таблиц с этих узлов, а также установить некий внешний процесс для учитывающей это маршрутизации для операций чтения.
В конце доклада мы перечислим новые улучшения, связанные с логической репликацией и вошедшие в недавние релизы PostgreSQL.