title

text

Robert Haas
Robert Haas EnterpriseDB Вице-президент, руководитель исследований в сфере СУБД
17:00 02 марта
45 мин

Повреждение данных: как его избежать, обнаружить и обеспечить восстановление

Повреждение данных в PostgreSQL может происходить по ряду причин, в числе которых аппаратные ошибки, программные сбои и ошибки пользователя. В данном докладе я расскажу о своём опыте работы с повреждёнными базами. В частности, я упомяну о частых причинах повреждения данных в базе, среди которых процедурные ошибки при снятии резервных копий или восстановлении из них. Также я остановлюсь на частых последствиях повреждения данных в базе - например, ошибках, которые говорят о несоответствии между таблицей и ее индексами либо таблицей и TOAST-таблицей. Также я уделю некоторое внимание техникам, которые используют для восстановления базы или исправления ошибок после повреждения данных, в том числе моему опыту использования pg_resetxlog. Основой для данного доклада послужили реальные кейсы, с которыми я сталкивался в ходе работы с клиентами EnterpriseDB. Надеюсь, что они будут полезны разработчикам PostgreSQL для возможных улучшений этой СУБД, а пользователи получат представление о том, как избежать повреждения данных, обнаруживать его, если оно произошло, и справляться с ним.

Видео

Другие доклады

  • Pavel Stehule
    Pavel Stehule freelancer Независимый консультант и разработчик
    22 мин

    Как использовать pspg

    pspg - это unix-совместимый инструмент для постраничного просмотра данных, разработанный специально для Postgres-клиента psql. На сегодняшний день его возможности не ограничиваются обычным просмотром данных. Он может работать в режиме приложения или инструмента для открытия CSV и TSV файлов. В рамках доклада я постараюсь продемонстрировать основные возможности данного приложения.

  • Yana Krasteva
    Yana Krasteva Swarm64 VP Product and Innovation
    22 мин

    Современное хранилище данных на основе PostgreSQL

    Построение хранилища данных на основе PostgreSQL имеет долгую историю. Netezza, Redshift и Greenplum превратили определенные релизы PostgreSQL в решения для хранения данных. В настоящее время, с учетом тенденции к повышению производительности PostgreSQL (улучшение секционирования, статистики, JIT-компиляция и т. д.) и наличия продвинутых расширений, таких, как Swarm64 Data Accelerator, вы можете создать современное, надёжное и многофункциональное хранилище данных. В этом докладе будут рассмотрены тенденции PostgreSQL и хранилищ данных и затронуты ключевые аргументы в пользу выбора PostgreSQL для построения хранилища данных.

  • Алексей Фадеев
    Алексей Фадеев Sibedge Старший разработчик .NET, евангелист Postgres.
    22 мин

    Multicorn Foreign Data Wrapper против plpython

    Технология Multicorn позволяет разрабатывать FDW на языке Python, что гораздо проще и быстрее создания FDW на языке C. Однако есть и обратная сторона, Multicorn FDW хорошо работают с примитивными условиями WHERE, но на чуть более сложных случаях возникают трудности, про которые я расскажу. Случаи будут рассмотрены на примере моего Multicorn FDW для получения данных OpenStreetMap. Так же я покажу примеры использования одного и того же кода в Multicorn FDW и функции на plpython, в том числе сравнение производительности. В заключение поделюсь своими выводами, когда лучше использовать plpython, а когда Multicorn FDW.

  • Ibrar Ahmed
    Ibrar Ahmed Percona LLC Senior Database Architect
    90 мин

    Оптимизация производительности PostgreSQL

    PostgreSQL - одна из лидирующих технологий среди СУБД с открытым исходным кодом. По умолчанию конфигурация PostgreSQL не подходит для конкретной рабочей нагрузки. Эта дефолтная конфигурация PostgreSQL рассчитана на то, чтобы пользователь мог запустить Postgres на любой системе, используя минимум ресурсов. Следовательно, установленный на высокопроизводительной машине экземпляр PostgreSQL в конфигурации по умолчанию не даст оптимальной производительности, потому что машина настроена так, чтобы использовать все доступные ресурсы. PostgreSQL предоставляет возможности для настройки СУБД под вашу рабочую нагрузку и характеристики вашего оборудования. Помимо PostgreSQL также можно настроить ядро Linux для оптимизации работы СУБД под нагрузкой. В рамках данного мастер-класса мы научимся настраивать некоторые параметры PostgreSQL и посмотрим, какой эффект даёт такая настройка. Однако основной акцент мы сделаем на том, как сконфигурировать Linux для улучшения производительности Postgres. Поскольку в ядре Linux так много параметров, которые можно настроить для более оптимальной работы PostgreSQL, я также поделюсь результатами сравнительного тестирования для разных значений некоторых параметров Linux.