title

text

Alicja Kucharczyk
Alicja Kucharczyk Microsoft EMEA Global Blackbelt OSS Data Tech Specialist
Sushant Pandey
Sushant Pandey Microsoft 500032
13:00 03 марта
22 мин

История одной миграции

В данном рассказе мы хотим рассказать о том, как команда Microsoft, созданная из двух различных команд, работала над проектом, решала проблемы миграции, используя ora2pg, и смогла доказать, что Postgres Single Server может демонстрировать хорошую производительность наравне с Oracle Exadata. Мы расскажем о наших методах работы, а также о ряде основных проблем технического характера, с которыми мы столкнулись, включая миграцию выражений BULK COLLECT, иерархических запросов, курсорных выражений REF CURSOR и других, более сложных конструкций Oracle.

Наша история о практическом подтверждении гипотезы, которое доказало, что Postgres может демонстрировать такую же производительность, как Oracle Exadata. Схема мигрируемой БД была не самой простой. Скорее, наоборот. Код был нагружен динамическими запросами, выражениями BULK COLLECT, вложенными циклами, операторами CONNECT BY, глобальными переменными и множеством зависимостей. Инструмент Ora2pg очень помог нам с преобразованием схемы БД, но всё равно осталось много работы, которую можно было сделать только вручную. Оценки, которые мы получили благодаря инструменту, также оказались очень далеки от истины, поскольку требовалась не просто миграция кода, а изменение его архитектуры. В рамках нашего доклада мы рассмотрим следующие подтемы:

  • Как (не) работают оценки
  • Как мы справились с миграцией выражений BULK COLLECT
  • Почему мы избавились от выражений REF CURSOR
  • Как мы застряли на фазе тестирования одного из пакетов и как помощь друга помогла нам в решении этой проблемы.
  • Как мы справились с иерархическими запросами и детализацией иерархии

Видео

Другие доклады

  • Bo Peng
    Bo Peng SRAOSS, Inc. Japan Старший инженер-разработчик
    45 мин

    Развёртывание PostgreSQL-кластера с балансировщиком запросов и мониторингом в Kubernetes

    Kubernetes - это платформа оркестровки контейнеров с открытым исходным кодом для автоматизации развертывания, масштабирования и управления контейнерами приложений. В настоящее время все больше и больше приложений развертываются в контейнерах на Kubernetes.

    Есть несколько решений для запуска кластера PostgreSQL на Kubernetes. Однако эти решения не предусматривают балансировку нагрузки. В этом выступлении я покажу вам, как объединить PostgreSQL-оператор с Pgpool-II для развертывания в Kubernetes кластера PostgreSQL с возможностью балансировки нагрузки.

    Мониторинг - очень важная часть для любого реального продакшна. Хотя Kubernetes предоставляет базовый способ мониторинга состояния кластера PostgreSQL, этого недостаточно для управления кластером PostgreSQL в продакшне. Важным улучшением версии Pgpool-II 4.2 является возможность вывода более полезной статистики кластера PostgreSQL. В этом докладе я объясню, как отслеживать и визуализировать статистику кластера PostgreSQL в Prometheus для расширенного мониторинга кластера.

  • Артём Картасов
    Артём Картасов Postgres.ai Software Engineer
    45 мин

    Над пропастью WAL-G

    Что мы ожидаем от системы резервного копирования? Что отличает хорошую систему бэкапов? И самое главное - как выбрать для этого процесса подходящие инструменты? При подготовке резервных копий возникает немало насущных вопросов.

    В докладе я расскажу историю построения системы снятия и верификации бэкапов в отдельно взятой компании. Обсудим вопросы выбора инструмента по работе с резервными копиями, адаптации к изменяющимся реалиям, проблемы облачных хранилищ и безграничные возможности open-source коллаборации.

    Приглашаю вас в увлекательное путешествие длиной 2 года.

  • Андрей Фефелов
    Андрей Фефелов Mastery.pro Технический директор
    22 мин

    Как обфусцировать базу в Postgres для задач нагрузочного тестирования веб-приложений

    Postgres - отличная база данных для высоконагруженных веб-приложений. В свою очередь для таких веб-приложений периодически встает задача нагрузочного/стресс тестирования. Кроме очевидных сложностей: эмуляции рабочего окружения близкого к продуктовому и генерации трафика есть задача подготовки базы данных для тестового окружения. В эпоху борьбы за приватность персональных данных (152-ФЗ, GDPR, HIPAA) использование базы с прода выглядит плохой идеей. Выход один - обфусцировать данные.

    Существуют различные инструменты для обфускации данных в Postgres. В докладе я расскажу, какие из них мы выбрали и почему, с какими трудностями столкнулись во время использования, насколько удачно решили задачу.

    Вы узнаете возможно ли получить идентичный отклик на тестовой базе без реальных данных с прода, посмотрим графики, обсудим ограничения, которые возникают при обфускации, я познакомлю вас с нашими наработками, упрощающими задачу.

  • Dimitri Fontaine
    Dimitri Fontaine
    45 мин

    Архитектуры с Postgres в продакшне

    При использовании PostgreSQL в продакшне крайне важно реализовать стратегию высокой доступности. В случае с сервисом БД требования к высокой доступности будут касаться как самого сервиса, так и набора данных.

    В рамках данного доклада мы попробуем определить потребности вашей конкретной продакшн-среды в высокой доступности и постараемся выполнить необходимые требования с использованием открытых бесплатных инструментов, разработанных для PostgreSQL. В частности, мы рассмотрим многие возможности, которые можно реализовать для Postgres, чтобы превратить его из обычного набора инструментов в реально работающий. Что это означает в контексте высокой доступности? Как выполнить эти требования?