Современное хранилище данных на основе PostgreSQL
Построение хранилища данных на основе PostgreSQL имеет долгую историю. Netezza, Redshift и Greenplum превратили определенные релизы PostgreSQL в решения для хранения данных. В настоящее время, с учетом тенденции к повышению производительности PostgreSQL (улучшение секционирования, статистики, JIT-компиляция и т. д.) и наличия продвинутых расширений, таких, как Swarm64 Data Accelerator, вы можете создать современное, надёжное и многофункциональное хранилище данных. В этом докладе будут рассмотрены тенденции PostgreSQL и хранилищ данных и затронуты ключевые аргументы в пользу выбора PostgreSQL для построения хранилища данных.
Другие доклады
-
Daniel Westermann dbi services Principal Consultant
Как переносить данные из Oracle в PostgreSQL и обратно
Использование PostgreSQL стало обычным делом во множестве организаций. В большинстве случаев PostgreSQL устанавливают в дополнение к уже имеющимся СУБД Oracle, и довольно скоро возникает закономерный вопрос: как перебрасывать данные из Oracle в PostgreSQL и наоборот? Давайте перенесёмся в прошлое, в март 2001, когда вышло новое расширение SQL стандарта, определившее общие принципы создания API для управления внешними данными: SQL/MED (ISO/IEC 9075-9:2008). Сообщество PostgreSQL довольно быстро создало фреймворк для использования рекомендаций стандарта в виде так называемых обёрток сторонних данных (foreign data wrappers). Это случилось в 2011 с выходом PostgreSQL 9.1. С тех пор число обёрток сторонних данных постоянно растёт. Сегодня благодаря им PostgreSQL может интегрировать данные почти из любого внешнего источника, будь то обычные файлы, другие реляционные СУБД или даже неструктурированные данные. В рамках этого доклада мы рассмотрим обёртку сторонних данных для Oracle и то, как её можно использовать для получения данных из Oracle в PostgreSQL. Однако обратное тоже верно: данные из PostgreSQL также можно отправить в Oracle, и это может быть важно для соблюдения требований. Обещаю, что в докладе будет две части: слайды и много демонстраций.
-
Дмитрий Урсегов Postgres Professional Руководитель группы разработки
Шардман - естественный подход к шардингу в PostgreSQL
Объем данных, с которым работают современные корпоративные и интернет системы, постоянно растет. При этом все сложнее становится иметь и синхронизировать несколько копий данных в разных системах. Возникает необходимость работать с большими объемами данных непосредственно в транзакционной СУБД, Часто такое требование накладывает и логика приложений, которым необходимы результаты в реальном времени. В докладе рассмотрим какой может быть универсальная распределенная транзакционная СУБД. Разберем такие аспекты как типы нагрузки и их приоритизация, динамическое выделение ресурсов, уровень консистентности. Расскажем на каких инструментах в PostgreSQL можно построить такую систему, что у нас уже получилось и какие задачи еще предстоит решить.
-
Mahmoud SAKR université libre de bruxelles ProfessorEsteban Zimányi ULB Профессор
Управление данными подвижных объектов с MobilityDB
MobilityDB - это расширение PostgreSQL and PostGIS для работы с движущимися объектами. В нём определяются типы данных и функции для полноценной работы с геопространственными траекториями. Основной тип данных - tgeompoint (темпоральная геометрическая точка). Она представляет собой полную траекторию движения точки - автомобиля, птицы или человека. Функция speed(tgeompoint) вычисляет скорость точки как функцию времени, в форме tfloat (темпоральное число с плавающей точкой). Подобным образом в MobilityDB определяется 6 темпоральных типов и около 300 функций. Благодаря этому, MobilityDB представляет собой весьма функциональную платформу для управления подвижными данными.
В этом мастер-классе Вы:
- узнаете о базах данных подвижных объектов
- напишете SQL запросы для MobilityDB для изучения базы траекторий объектов
- ознакомитесь с типами данных, функциями и индексами MobilityDB.
-
Павел Борисов Postgres Professional программист
Ускорение быстрого текстового поиска с помощью индекса RUM
Быстрый текстовый поиск в PostgreSQL существенно ускоряется, если использовать обратные составные индексы по лексемам внутри типа tsvector. Индекс RUM - это свободное расширение, основанное на индексе GIN. Оно индексирует не только лексемы, но и их положение в текстовом поле, а также включает дополнительную информацию - вес лексемы, это позволяет полнее поддерживать возможности tsvector.
До недавних пор запросы с весами лексем в индексе RUM требовали перепроверки по таблице. Моя модификация (2020) в разы ускоряет такие запросы, делая их index-only.
В докладе будут представлены различные сценарии использования быстрого текстового поиска и применение индекса RUM для его существенного ускорения, а также бенчмарки по сравнению с встроенным в PostgreSQL индексом GIN.