title

text

Daniele Varrazzo
Daniele Varrazzo Codice Lieve Директор
: декабря
45 мин

psycopg3: как Питон полюбил Постгрес

На сегодняшний день Python является одним из наиболее часто используемых языков программирования в мире. Он прост в изучении и использовании и легко совместим с любыми известными сервисами и протоколами. psycopg2 - наиболее часто используемый драйвер PostgreSQL для Python: он обеспечивает хорошую производительность и делает взаимодействие между ЯП и СУБД максимально удобным.

За последние годы Python существенно изменился, и его первоклассная поддержка асинхронного программирования меняет способ написания новых программ. В PostgreSQL также было внесено множество изменений, поэтому требуется новое поколение драйвера, который позволит питонистам использовать все возможности Postgres по максимуму.

psycopg3 - это новое поколение наиболее часто используемой библиотеки-адаптера Python-PostgreSQL: она предлагает знакомый интерфейс и удобный процесс обновления, кроме того, она спроектирована для получения максимальной производительности от базы данных и ЯП: она поддерживает асинхронное программирование, связываемые переменные (prepared statements), двоичные параметры.

psycopg3 также экспериментирует с инновационной поддержкой JSONB и конвейерной обработкой запросов! Приходите и узнайте, что нового происходит на стыке вашего любимого языка программирования и базы данных!

Видео

Другие доклады

  • Pavel Stehule
    Pavel Stehule freelancer Независимый консультант и разработчик
    22 мин

    Как использовать pspg

    pspg - это unix-совместимый инструмент для постраничного просмотра данных, разработанный специально для Postgres-клиента psql. На сегодняшний день его возможности не ограничиваются обычным просмотром данных. Он может работать в режиме приложения или инструмента для открытия CSV и TSV файлов. В рамках доклада я постараюсь продемонстрировать основные возможности данного приложения.

  • Álvaro Hernández
    Álvaro Hernández OnGres Founder
    Fabrízio Mello
    Fabrízio Mello OnGres Inc Разработчик PostgreSQL
    45 мин

    Сетевой фильтр PostgreSQL для EnvoyProxy

    Как вы осуществляете мониторинг Postgres? Какую информацию вы собираете и насколько она помогает решать возникающие проблемы? Что если вам хочется или нужно логировать все запросы? Высоконагруженные базы данных могут выйти из строя при таком подходе.

    В OnGres мы стараемся сделать СУБД PostgreSQL более прозрачной для мониторинга. Поэтому мы вместе с командой Tetrate работали над Сетевым фильтром Envoy для PostgreSQL, расширением, призванным обеспечить и улучшить прозрачность для мониторинга входящего трафика в кластерной инфраструктуре. Это бесплатное расширение с открытым исходным кодом доступно для всех участников сообщества. Вы можете использовать его везде, где пользуетесь Envoy. Оно позволит вам автоматически собирать статистику и устранять проблемы сетевого трафика. Данный доклад обеспечит глубокое погружение в декодирование протокола PostgreSQL и прокси-фильтры Envoy. В рамках этого выступления также будут рассмотрены все возможности сетевого фильтра, его развёртывание и использование в любом окружении.

    Полезные ссылки:

  • Николай Самохвалов
    Николай Самохвалов Nombox LLC Основатель
    180 мин

    Бесшовная оптимизация запросов PostgreSQL, версия 2.0

    Существует два способа анализировать SQL-запросы:

    1. На макроуровне: в этом случае мы анализируем рабочую нагрузку как единое целое (есть три основных подхода: использование метрик из pg_stat_statements или аналогичного модуля, анализ логов с помощью pgBadger или другого похожего решения и запрос выборки в представлении pg_stat_activity).

    2. На микроуровне: в этом случае мы погружаемся в детали исполнения одного конкретного запроса (тут главную роль играет команда EXPLAIN).

    Между этими двумя подходами есть немало "белых пятен", которые обнаруживаются с ростом нагрузки. Главные проблемы:

    • Нужно переключаться между макро- и микроуровнем без больших накладных расходов.
    • Требуется надёжная проверка гипотез относительно возможных оптимизаций.
    • Есть необходимость минимизации рисков при развёртывании новой функциональности.

    Чтобы справляться с этими задачами в растущем проекте, требуется продвинутый опыт в качестве администратора баз данных, и – иногда – интуиция. Также могут помочь новые инструменты, которые (к счастью для нас!) не так давно начали появляться.

    В рамках данного мастер-класса мы разберёмся, как можно настроить процесс беспроблемной и бесшовной оптимизации SQL-запросов в вашей организации: а) какие инструменты следует выбрать в вашем конкретном случае? б) как эффективно заполнить вышеупомянутые пробелы в сфере анализа запросов?

  • Андрей Лепихов
    Андрей Лепихов Postgres Professional Программист
    22 мин

    Постгрессовый планнер с памятью

    Постгрес умеет строить оптимальные планы запросов для большинства практических случаев. Однако иногда, по объективным причинам, для сложных запросов или из-за ошибок в самом планнере, он может ошибаться и выдавать неоптимальный план. Из-за этого, время выполнения такого запроса может возрастать в десятки раз. Если запрос выполняется часто, то из раза в раз этот запрос выполняется дольше, чем мог бы, и СУБД в целом выдает меньший TPS. Если планнер сможет фиксировать свои ошибки и учитывать их при последующем планировании того же запроса, то это позволит улучшать характеристики СУБД в процессе её эксплуатациии. Мы представляем результаты разработки расширения для СУБД PostgreSQL, которое хранит историю выполнения запросов и реализует рекомендательный механизм для планнера. Показываем, как знание о ранее выполнявшихся запросах позволяет улучшить выполнение последующих.