title

text

Николай Самохвалов
Николай Самохвалов Nombox LLC Основатель
14:30 01 марта
45 мин

Автоматическое тестирование изменений БД (DDL, DML)

В высоконагруженном проекте любое изменение несёт в себе заметные риски сбоя или деградации производительности. Мы видим, как растёт сложность систем, количество серверов БД, релизов в неделю, автоматизация всего и вся в CI/CD pipelines, контейнерах, Kubernetes.

Но вот когда речь заходит о тестировании изменений в БД — от банального добавления индекса до сложных, почти «хирургических» операций вроде замены в первичного ключа int4 на int8 в многотерабайтной таблице под нагрузкой — тут налицо отставание технологий и методологий. В лучшем случае изменения проверяются визуально, и тут уж всё зависит от опыта и усталости проверяющего.

В докладе мы расскажем как мы (Postgres.ai) закрываем этот вопрос с помощью нашего решения Database Lab:

  • моментальная выдача независимых тонких клонов для многотерабайтных БД, готовых к проверкам,
  • интеграция в существующие CI/CD-инструменты и рабочий процесс,
  • сбор метрик, наиболее важных для принятия решения об одобрении/отклонении изменения (и даже автоматическое отклонения совсем опасных действий).

Видео

Другие доклады

  • Константин Евтеев
    Константин Евтеев X5 FoodTech Главный архитектор
    45 мин

    Формирование отчетов и аналитики в реальном времени с PostgreSQL.

    В современном мире операционная отчетность и аналитика в реальном времени становятся базовой потребностью. Существует огромное количество инструментов, практик и подходов, которые в свою очередь требуют различной экспертизы и ресурсов. В рамках данного выступления расскажу, как может происходить развитие с помощью PostgreSQL. Подводные камни при использовании различных схем. Поговорим про вопросы качества данных и производительности. Доклад будет интересен как тем, кто находится на начальном этапе, так и для практиков с многолетним опытом (буду рад горячим обсуждениям и вопросам после доклада) План доклада: 1. Эволюция построения отчетности - миграция с OLTP на OLAP. 2. Вызовы организации доставки данных в DWH. 3. Масштабирование архитектуры с ростом данных. 4. Вопросы качества данных. 5. Сохранение стабильности при большом кол-ве изменений. 6. Различные подходы по организации работ команды DWH. 7. И конечно же успешно решенные нами вызовы (pgAgent, PGWatch, работа с фс, новое прочтение postgresql.conf).

  • Daniele Varrazzo
    Daniele Varrazzo Codice Lieve Директор
    90 мин

    Python для PostgreSQL: как его использовать и преуспеть в этом?

    В рамках данного мастер-класса мы посмотрим, как обеспечить бесперебойную связь между Python и PostgreSQL. На практических примерах мы разберём, как подключиться к серверу, обеспечить обмен данными, управлять уведомлениями и транзакциями, передавая параметры безопасно и в понятной форме.

    Мы рассмотрим psycopg2, наиболее часто используемую библиотеку-адаптер PostgreSQL для Python, а также анонсируем предстоящий релиз psycopg3: что останется прежним, что изменится, как лучше реализовать программу на Python, чтобы использовать PostgreSQL по максимуму.

  • Алексей Фадеев
    Алексей Фадеев Sibedge Старший разработчик .NET, евангелист Postgres.
    22 мин

    Multicorn Foreign Data Wrapper против plpython

    Технология Multicorn позволяет разрабатывать FDW на языке Python, что гораздо проще и быстрее создания FDW на языке C. Однако есть и обратная сторона, Multicorn FDW хорошо работают с примитивными условиями WHERE, но на чуть более сложных случаях возникают трудности, про которые я расскажу. Случаи будут рассмотрены на примере моего Multicorn FDW для получения данных OpenStreetMap. Так же я покажу примеры использования одного и того же кода в Multicorn FDW и функции на plpython, в том числе сравнение производительности. В заключение поделюсь своими выводами, когда лучше использовать plpython, а когда Multicorn FDW.

  • Андрей Зубков
    Андрей Зубков Postgres Professional Руководитель группы систем мониторинга
    45 мин

    Анализатор исторической нагрузки pg_profile/pgpro_pwr и его новые возможности

    Речь пойдет о простом инструменте стратегического анализа исторической нагрузки. Расширение предназначено для поиска проблем производительности в базах данных Postgres. Расскажу о принципах работы расширения, его применимости, возможностях и развитии. У pg_profile появилась расширенная ветка pgpro_pwr, предназначенная для работы в дистрибутивах PostgresPro с расширенным набором статистик производительности. Покажу на простых примерах преимущества, доступные в базах PostgresPro Enterprise Edition и PostgresPro Standard Edition.