title

text

Tatsuro Yamada
Tatsuro Yamada NTT Comware Ведущий специалист по базам данных
Julien Rouhaud
Julien Rouhaud Разработчик
10:00 02 марта
22 мин

Построение автоматического консультанта и инструментов настройки производительности в PostgreSQL

PostgreSQL - зрелая реляционная СУБД, её история насчитывает более 30 лет. За последний год её оптимизатор запросов стал лучше, и обычно он создаёт хорошие планы выполнения запросов.

Но всегда ли эти планы выполнения запросов хороши? Чтобы оптимизировать процесс их создания, приходится пользоваться предположениями, чтобы планы выполнения запросов создавались достаточно быстро. Некоторые из этих предположений проверить довольно легко (например, актуальность статистики), другие сложнее (например, надо убедиться, что правильные индексы были созданы), а некоторые проверить почти невозможно (например, убедиться, что выборки достаточно репрезентативны даже для ассиметричного повторного секционирования данных). Сегодня из-за всех этих предположений администратор базы данных не всегда осознаёт, что он мог бы добиться значительного улучшения производительности.

Чтобы помочь администраторам баз данных работать с действительно хорошим планом выполнения запросов, ниже мы представим несколько инструментов, которые могли бы помочь решить вышеупомянутые проблемы. Мы расскажем о консультанте для недостающих индексов, поиске недостающей статистики для создания новых метрик, а также информации для исправления ошибок в оценке строк (при этом порядок выполняемых операций соединения и оператор соединения определяются автоматически).

  • pg_qualstats предоставляет подсказки для создания новых индексов и расширенной статистики чтобы собрать много предикатных статистических данных о производственной нагрузке.
  • pg_plan_advsr создаёт альтернативные планы выполнения запросов автоматически для анализа информации об итеративном выполнении запросов, чтобы исправить ошибку оценки строк.

В рамках этого доклада мы объясним, как устроены эти инструменты, что можно делать с их помощью, и как эффективно использовать оба инструмента вместе. Мы также упомянем другие инструменты для решения смежных проблем. Поэтому наш доклад будет полезен администраторам баз данных, которые заинтересованы в улучшении производительности при выполнении запросов или хотят проверить адекватность существующих настроек, индексов или статистики.

слайды

Видео

Другие доклады

  • Иван Панченко
    Иван Панченко Postgres Professional заместитель генерального директора
    22 мин

    Новости и роудмап СУБД Postgres Pro

    Сооснователь Postgres Professional расскажет о работе компании над СУБД Postgres Pro, опишет её отличия от PostgreSQL и обозначит направления её дальнейшего развития.

  • Павел Борисов
    Павел Борисов Postgres Professional разработчик PostgreSQL
    45 мин

    Ускорение быстрого текстового поиска с помощью индекса RUM

    Быстрый текстовый поиск в PostgreSQL существенно ускоряется, если использовать обратные составные индексы по лексемам внутри типа tsvector. Индекс RUM - это свободное расширение, основанное на индексе GIN. Оно индексирует не только лексемы, но и их положение в текстовом поле, а также включает дополнительную информацию - вес лексемы, это позволяет полнее поддерживать возможности tsvector.

    До недавних пор запросы с весами лексем в индексе RUM требовали перепроверки по таблице. Моя модификация (2020) в разы ускоряет такие запросы, делая их index-only.

    В докладе будут представлены различные сценарии использования быстрого текстового поиска и применение индекса RUM для его существенного ускорения, а также бенчмарки по сравнению с встроенным в PostgreSQL индексом GIN.

  • Daniel Westermann
    Daniel Westermann dbi services Principal Consultant
    45 мин

    Как переносить данные из Oracle в PostgreSQL и обратно

    Использование PostgreSQL стало обычным делом во множестве организаций. В большинстве случаев PostgreSQL устанавливают в дополнение к уже имеющимся СУБД Oracle, и довольно скоро возникает закономерный вопрос: как перебрасывать данные из Oracle в PostgreSQL и наоборот? Давайте перенесёмся в прошлое, в март 2001, когда вышло новое расширение SQL стандарта, определившее общие принципы создания API для управления внешними данными: SQL/MED (ISO/IEC 9075-9:2008). Сообщество PostgreSQL довольно быстро создало фреймворк для использования рекомендаций стандарта в виде так называемых обёрток сторонних данных (foreign data wrappers). Это случилось в 2011 с выходом PostgreSQL 9.1. С тех пор число обёрток сторонних данных постоянно растёт. Сегодня благодаря им PostgreSQL может интегрировать данные почти из любого внешнего источника, будь то обычные файлы, другие реляционные СУБД или даже неструктурированные данные. В рамках этого доклада мы рассмотрим обёртку сторонних данных для Oracle и то, как её можно использовать для получения данных из Oracle в PostgreSQL. Однако обратное тоже верно: данные из PostgreSQL также можно отправить в Oracle, и это может быть важно для соблюдения требований. Обещаю, что в докладе будет две части: слайды и много демонстраций.

  • Sushant Pandey
    Sushant Pandey Microsoft Engineering Architect in the Microsoft India team specializing in relational databases.
    Alicja Kucharczyk
    Alicja Kucharczyk Microsoft EMEA Global Blackbelt OSS Data Tech Specialist
    22 мин

    История одной миграции

    В данном рассказе мы хотим рассказать о том, как команда Microsoft, созданная из двух различных команд, работала над проектом, решала проблемы миграции, используя ora2pg, и смогла доказать, что Postgres Single Server может демонстрировать хорошую производительность наравне с Oracle Exadata. Мы расскажем о наших методах работы, а также о ряде основных проблем технического характера, с которыми мы столкнулись, включая миграцию выражений BULK COLLECT, иерархических запросов, курсорных выражений REF CURSOR и других, более сложных конструкций Oracle.

    Наша история о практическом подтверждении гипотезы, которое доказало, что Postgres может демонстрировать такую же производительность, как Oracle Exadata. Схема мигрируемой БД была не самой простой. Скорее, наоборот. Код был нагружен динамическими запросами, выражениями BULK COLLECT, вложенными циклами, операторами CONNECT BY, глобальными переменными и множеством зависимостей. Инструмент Ora2pg очень помог нам с преобразованием схемы БД, но всё равно осталось много работы, которую можно было сделать только вручную. Оценки, которые мы получили благодаря инструменту, также оказались очень далеки от истины, поскольку требовалась не просто миграция кода, а изменение его архитектуры. В рамках нашего доклада мы рассмотрим следующие подтемы:

    • Как (не) работают оценки
    • Как мы справились с миграцией выражений BULK COLLECT
    • Почему мы избавились от выражений REF CURSOR
    • Как мы застряли на фазе тестирования одного из пакетов и как помощь друга помогла нам в решении этой проблемы.
    • Как мы справились с иерархическими запросами и детализацией иерархии