title

text

Mahmoud SAKR
Mahmoud SAKR
Esteban Zimányi
Esteban Zimányi
11:40 03 марта
90 мин

Управление данными подвижных объектов с MobilityDB

MobilityDB - это расширение PostgreSQL and PostGIS для работы с движущимися объектами. В нём определяются типы данных и функции для полноценной работы с геопространственными траекториями. Основной тип данных - tgeompoint (темпоральная геометрическая точка). Она представляет собой полную траекторию движения точки - автомобиля, птицы или человека. Функция speed(tgeompoint) вычисляет скорость точки как функцию времени, в форме tfloat (темпоральное число с плавающей точкой). Подобным образом в MobilityDB определяется 6 темпоральных типов и около 300 функций. Благодаря этому, MobilityDB представляет собой весьма функциональную платформу для управления подвижными данными.

В этом мастер-классе Вы:

  • узнаете о базах данных подвижных объектов
  • напишете SQL запросы для MobilityDB для изучения базы траекторий объектов
  • ознакомитесь с типами данных, функциями и индексами MobilityDB.

Видео

Другие доклады

  • Amit Kapila
    Amit Kapila
    45 мин

    Как будет развиваться логическая репликация?

    Логическая репликация в PostgreSQL доступна начиная с версии 10.0, и с каждым новым релизом она улучшается. Мы начнём доклад с обсуждения базовой архитектуры логической репликации в PostgreSQL, а затем перейдём к различным способам её использования.

    Одним из недостатков логической репликации по сравнению с физической является невозможность репликации транзакции до момента коммита. Для транзакций, которые выполняются продолжительное время, это может привести к серьёзной задержке на стороне реплики. Мы обсудим, какое решение этой проблемы реализовано в PostgreSQL.

    Мы также остановимся на других крупных разработках в области логической репликации, которые позволят осуществлять потоковую передачу транзакций в заранее заданное время. Это позволит реализовать логическую репликацию без конфликтов. Это также можно будет использовать для масштабирования чтения. Благодаря протоколу 2PC мы сможем убедиться, что реплики получили все данные, закоммиченные на мастере. Теперь мы можем спроектировать систему, где определённые узлы являются владельцами некоторого набора таблиц. Так мы всегда сможем получить данные этих таблиц с этих узлов, а также установить некий внешний процесс для учитывающей это маршрутизации для операций чтения.

    В конце доклада мы перечислим новые улучшения, связанные с логической репликацией и вошедшие в недавние релизы PostgreSQL.

  • Андрей Зубков
    Андрей Зубков
    45 мин

    Анализатор исторической нагрузки pg_profile/pgpro_pwr и его новые возможности

    Речь пойдет о простом инструменте стратегического анализа исторической нагрузки. Расширение предназначено для поиска проблем производительности в базах данных Postgres. Расскажу о принципах работы расширения, его применимости, возможностях и развитии. У pg_profile появилась расширенная ветка pgpro_pwr, предназначенная для работы в дистрибутивах PostgresPro с расширенным набором статистик производительности. Покажу на простых примерах преимущества, доступные в базах PostgresPro Enterprise Edition и PostgresPro Standard Edition.

  • Yana Krasteva
    Yana Krasteva
    22 мин

    Современное хранилище данных на основе PostgreSQL

    Построение хранилища данных на основе PostgreSQL имеет долгую историю. Netezza, Redshift и Greenplum превратили определенные релизы PostgreSQL в решения для хранения данных. В настоящее время, с учетом тенденции к повышению производительности PostgreSQL (улучшение секционирования, статистики, JIT-компиляция и т. д.) и наличия продвинутых расширений, таких, как Swarm64 Data Accelerator, вы можете создать современное, надёжное и многофункциональное хранилище данных. В этом докладе будут рассмотрены тенденции PostgreSQL и хранилищ данных и затронуты ключевые аргументы в пользу выбора PostgreSQL для построения хранилища данных.

  • Álvaro Hernández
    Álvaro Hernández
    180 мин

    Как преобразовать Postgres в облачную платформу

    Сводится ли развёртывание Postgres на Kubernetes к простой перераспаковке в контейнере? Или Postgres может использовать другой cloud-native софт для более качественной интеграции с K8s? Мы поговорим об этом на данном мастер-классе и продемонстрируем несколько примеров на StackGres:

    • Как преобразовать Postgres в контейнер без инициализации с несколькими контейнерами-"прицепами" для создания пула соединений, резервного копирования, агентов и т.п.
    • Определение высокоуровневых CRD в качестве единого API для взаимодействия с Postgres оператором.
    • Использование авторизации на основе K8s RBAC для аутентификации пользователя веб-интерфейса управления.
    • Использование Prometheus для мониторинга; сборка узла, использование экспортёров и Postgres, и PgBouncer.
    • Проксирование трафика Postgres traffic через Envoy. Завершение работы Postgres SSL с помощью плагина Envoy, который также экспортирует метрики "проводного" протокола в Prometheus.
    • Использование Fluentbit для сбора логов Postgres и их пересылки в Fluentd, который хранит их в централизованной постгрессовой базе данных.

    Во время мастер-класса вы сможете повторить все действия на собственном Kubernetes-кластере и с лёгкостью пройти путь от новичка до профи в Postgres на Kubernetes! Вы сможете создавать собственный Postgres-as-a-Service на Kubernetes всего за несколько минут!