Как преобразовать Postgres в облачную платформу
Сводится ли развёртывание Postgres на Kubernetes к простой перераспаковке в контейнере? Или Postgres может использовать другой cloud-native софт для более качественной интеграции с K8s? Мы поговорим об этом на данном мастер-классе и продемонстрируем несколько примеров на StackGres:
- Как преобразовать Postgres в контейнер без инициализации с несколькими контейнерами-"прицепами" для создания пула соединений, резервного копирования, агентов и т.п.
- Определение высокоуровневых CRD в качестве единого API для взаимодействия с Postgres оператором.
- Использование авторизации на основе K8s RBAC для аутентификации пользователя веб-интерфейса управления.
- Использование Prometheus для мониторинга; сборка узла, использование экспортёров и Postgres, и PgBouncer.
- Проксирование трафика Postgres traffic через Envoy. Завершение работы Postgres SSL с помощью плагина Envoy, который также экспортирует метрики "проводного" протокола в Prometheus.
- Использование Fluentbit для сбора логов Postgres и их пересылки в Fluentd, который хранит их в централизованной постгрессовой базе данных.
Во время мастер-класса вы сможете повторить все действия на собственном Kubernetes-кластере и с лёгкостью пройти путь от новичка до профи в Postgres на Kubernetes! Вы сможете создавать собственный Postgres-as-a-Service на Kubernetes всего за несколько минут!
Видео
Другие доклады
-
Иван Чувашов ООО Calltouch DBA
Жизнь DBA в онлайн-кинотеатре "OKKO"
Okko — один из самых больших легальных онлайн-кинотеатров в России. В нашем каталоге представлено 60 000 фильмов, мультфильмов и сериалов. С момента запуска сервис посетили более 20 млн пользователей. Ежемесячная аудитория составляет 2,8 млн человек Все эти цифры говорят о надежном высоконагруженном сервисе.
В своем докладе я, как DBA, буду говорить преимущественно о базах данных (PostgreSQL, Cassandra, Redis), которые используются в компании. Подробно рассмотрим PostgreSQL на темы высоких нагрузок, мониторинга, оптимизации, резервного копирования и восстановления.
-
Yana Krasteva Swarm64 VP Product and Innovation
Современное хранилище данных на основе PostgreSQL
Построение хранилища данных на основе PostgreSQL имеет долгую историю. Netezza, Redshift и Greenplum превратили определенные релизы PostgreSQL в решения для хранения данных. В настоящее время, с учетом тенденции к повышению производительности PostgreSQL (улучшение секционирования, статистики, JIT-компиляция и т. д.) и наличия продвинутых расширений, таких, как Swarm64 Data Accelerator, вы можете создать современное, надёжное и многофункциональное хранилище данных. В этом докладе будут рассмотрены тенденции PostgreSQL и хранилищ данных и затронуты ключевые аргументы в пользу выбора PostgreSQL для построения хранилища данных.
-
Алексей Фадеев Sibedge Старший разработчик .NET, евангелист Postgres.
Multicorn Foreign Data Wrapper против plpython
Технология Multicorn позволяет разрабатывать FDW на языке Python, что гораздо проще и быстрее создания FDW на языке C. Однако есть и обратная сторона, Multicorn FDW хорошо работают с примитивными условиями WHERE, но на чуть более сложных случаях возникают трудности, про которые я расскажу. Случаи будут рассмотрены на примере моего Multicorn FDW для получения данных OpenStreetMap. Так же я покажу примеры использования одного и того же кода в Multicorn FDW и функции на plpython, в том числе сравнение производительности. В заключение поделюсь своими выводами, когда лучше использовать plpython, а когда Multicorn FDW.
-
Василий Пучков ООО Главный эксперт
Разработка интеграционной базы производственных данных нефтебаз на базе PostgreSQL
Архитектурный подход как основа устойчивого решения. Старые и новые технологии - единство и борьба противоположностей. Информационная безопасность и требования бизнеса - есть ли компромисс?