Как преобразовать Postgres в облачную платформу
Сводится ли развёртывание Postgres на Kubernetes к простой перераспаковке в контейнере? Или Postgres может использовать другой cloud-native софт для более качественной интеграции с K8s? Мы поговорим об этом на данном мастер-классе и продемонстрируем несколько примеров на StackGres:
- Как преобразовать Postgres в контейнер без инициализации с несколькими контейнерами-"прицепами" для создания пула соединений, резервного копирования, агентов и т.п.
- Определение высокоуровневых CRD в качестве единого API для взаимодействия с Postgres оператором.
- Использование авторизации на основе K8s RBAC для аутентификации пользователя веб-интерфейса управления.
- Использование Prometheus для мониторинга; сборка узла, использование экспортёров и Postgres, и PgBouncer.
- Проксирование трафика Postgres traffic через Envoy. Завершение работы Postgres SSL с помощью плагина Envoy, который также экспортирует метрики "проводного" протокола в Prometheus.
- Использование Fluentbit для сбора логов Postgres и их пересылки в Fluentd, который хранит их в централизованной постгрессовой базе данных.
Во время мастер-класса вы сможете повторить все действия на собственном Kubernetes-кластере и с лёгкостью пройти путь от новичка до профи в Postgres на Kubernetes! Вы сможете создавать собственный Postgres-as-a-Service на Kubernetes всего за несколько минут!
Видео
Другие доклады
-
Алексей Лесовский Data Egret PostgreSQL DBA
Noisia - генератор аварийных и нештатных ситуаций в PostgreSQL
Noisia это результат всех предыдущих попыток собрать в одном месте все мои инструменты для воспроизведения нештатных и аварийных ситуаций в Postgres.
Noisia это утилита которая позволяет легко и непринужденно создавать аварийные ситуации в БД. В этом докладе я расскажу зачем потребовалось создавать такие ситуации, как теперь в этом помогает Noisia и где еще может пригодиться этот инструмент. Также хочу поделиться планами развития на будущее.
-
Henrietta Dombrovskaya Braviant Holdings Зам.директора по СУБД
NORM - фреймворк без ORM
Хорошо известно, что, хотя производительность базы данных велика и каждый запрос выполняется за миллисекунды, общее время отклика приложения может быть медленным, поэтому пользователи могут долго ждать ответа. Мы знаем, что проблема не в базе данных, а в том, как разработчики приложений с ней общаются. В частности, речь идет об ORM - Object-Relational Mappers. Разработчики баз данных ненавидят их, но разработчики приложений любят их, потому что они позволяют разрабатывать приложения без каких-либо знаний о внутреннем устройстве СУБД. В результате производительность системы часто оказывается неприемлемо низкой.
Единственный способ изменить это - предоставить разработчикам приложений такой же простой в использовании инструмент, как ORM, но позволяющий избежать распространенных ошибок ORM. Вот почему мы разработали NORM - No-ORM Framework. Во время этой презентации мы рассмотрим примеры кода из репозитория https://github.com/hettie-d/NORM и узнаем, как создавать «транспортные объекты» для эффективной передачи данных между приложениями и базами данных.
-
Дмитрий Долгов Zalando SE Senior Software Engineer
Сколько нужно инженеров, чтобы скобки заработали?
Недавно появившийся в PostgreSQL, jsonb subscripting не выглядит так же захватывающе, как другие улучшения в jsonb. Но те изменения, которые видны пользователю - всего лишь верхушка айсберга. Как много людей было вовлечено в разработку, и какие решения были сделаны в дизайне? Как много времени это заняло, и какие хорошие/плохие идеи существуют для продвижения патча? Эти и несколько других вопросов будут целью это презентации.
-
Андрей Фефелов Mastery.pro Технический директор
Как обфусцировать базу в Postgres для задач нагрузочного тестирования веб-приложений
Postgres - отличная база данных для высоконагруженных веб-приложений. В свою очередь для таких веб-приложений периодически встает задача нагрузочного/стресс тестирования. Кроме очевидных сложностей: эмуляции рабочего окружения близкого к продуктовому и генерации трафика есть задача подготовки базы данных для тестового окружения. В эпоху борьбы за приватность персональных данных (152-ФЗ, GDPR, HIPAA) использование базы с прода выглядит плохой идеей. Выход один - обфусцировать данные.
Существуют различные инструменты для обфускации данных в Postgres. В докладе я расскажу, какие из них мы выбрали и почему, с какими трудностями столкнулись во время использования, насколько удачно решили задачу.
Вы узнаете возможно ли получить идентичный отклик на тестовой базе без реальных данных с прода, посмотрим графики, обсудим ограничения, которые возникают при обфускации, я познакомлю вас с нашими наработками, упрощающими задачу.