
Как поместить весь мир в обычный ноутбук: PostgreSQL и OpenStreetMap
Я покажу в PostGIS, как каждый может проанализировать геоданные всей Земли и получить ответы на свои глобальные вопросы за минуты и секунды.
Когда вы пользуетесь такси в небольших городах, вызывая машину по телефону, то с высокой вероятностью вашу поездку тарифицирует программа на основе данных OSM. Для тарификации используется какой-либо из пакетов прокладки маршрута. Благодаря этому сценарию использования, сотрудники таксопарка указывают номер дома и улицу на зданиях и делают вклад не только в свой бизнес, но и в OpenStreetMap.
В сценарии аналитики данных входят и задачи где лучше разместить торговую точку, чтобы в нее приходили покупатели. Опять же данные о шаговой доступности и населенности окресностей можно извлечь из геоданных. Можно расчитывать стоимость недвижимости на основе множества факторов связанных с расположением объекта и его окружения.
Ученые могут строить прогнозные модели для предсказания эпидемий, эволюции городов, планировать рекреационные зоны и застройку существующих территорий на основе открытых геоданных.
Ну и можно ответить на любой вопрос по географии который вам придет в голову: посчитать площади городов и построек, протяженности дорог и извлечь названия городов, областей и островов. Можете, например, стать чемпионом по игре в "Города" или основать новый сервис прокатов электро самокатов. Все ограничивается лишь вашей фантазией.
Я опубликовал https://github.com/igor-suhorukov/openstreetmap_h3 — мой проект высокопроизводительного загрузчика данных, который позволяет выполнять геоаналитику данных из OpenStreetMap в PostGIS. Он преобразует дамп OpenStreetMap всего мира или региона PBF в схему, разделенную по регионам H3. Опция столбцового хранения активирует расширение CitusDB в PostgreSQL для ускорения аналитических запросов.