title

text

Сергей Новиков
Сергей Новиков ЕДИНЫЙ ЦУПИС Lead DBA
16:50 08 апреля
40 мин

Оптимизация OLTP-нагрузки

В докладе представлен обобщённый опыт компании ЕДИНЫЙ ЦУПИС в вопросах оптимизации OLTP-запросов: • Как идентифицировать причины перегрузки сервера. • Какие настройки помогают улучшать планы и ускорять запросы, которые и так работают быстро. • Как лучше подготовить индексы и сами запросы. Также будут рассмотрены различные примеры деградации производительности из практики.

Другие доклады

  • Алексей Борщев
    Алексей Борщев Postgres Professional Инженер
    20 мин

    Про-Shardman

    Инженеры Постгрес Профессиональный А. Борщев и П. Конотопов расскажут о Шардмане с точки зрения SQL разработчиков и архитекторов БД: - Что такое Шардман - Чем отличается от обычного Постгреса - Типы таблиц и их использование - Как адаптировать схему БД для работы на шардах

  • Иван Оселедец
    Иван Оселедец
    45 мин

    Современные методы искусственного интеллекта

    В докладе будет дан краткий обзор основных понятий, решаемых проблем и перспектив искусственного интеллекта

  • Алексей Фадеев
    Алексей Фадеев Sibedge Старший разработчик .NET, евангелист Postgres.
    40 мин

    PostGIS + k-NN: как найти ближайший бар, и правда ли, что Земля не плоская

    В обзорных докладах по Postgres можно встретить упоминание алгоритма k-NN для поиска в пространстве. В данном докладе тема будет рассмотрена более глубоко, описан механизм индексирования поиска в пространстве в картинках. Так же я покажу, как с помощью популярного бесплатного расширения PostGIS применить алгоритм k-NN к географическим координатам точек на земном шаре, которые не являются прямоугольными. Для всех примеров будет показана реализация в ORM.

  • Владимир Сердюк
    Владимир Сердюк Общество с ограниченной ответственностью «Кластерные технологии Софтпоинт» Ген. директор
    40 мин

    Распределение транзакционной нагрузки в кластере серверов СУБД

    Данный доклад представляет собой описание концепции и прототипа кластера СУБД, работающего по принципу Master-Master. Проблема синхронизации данных в таких системах ни в одном тиражном решении до сих пор не решена, поэтому масштабирование для OLTP-систем, где транзакционная нагрузка сильно превалирует над аналитической, решается до сих пор только усилением аппаратной части – добавить ядер/процессоров, добавить памяти, что зачастую бывает не самым рациональным решением. Напомню, что задача распределения аналитической нагрузки решается относительно просто с помощью создания дополнительных реплик и перенаправления запросов на чтение вне транзакций на другие реплики. В случае же транзакционной нагрузки, если применять аналогичный подход, возникают коллизии, например, типа «писатель-писатель», которые, если их не учитывать, могут привести к неверным данным в транзакциях. Концепция кластера распределённых вычислений на первый взгляд звучит просто: «Все запросы на изменение данных выполняются мгновенно на всех нодах (серверах кластера), а чтение выполняется локально». Специальный прокси-агент распарсивает запросы, и выполняет запросы на чтение локально, а запросы на изменение перенаправляются параллельно и асинхронно на все остальные ноды кластера. Все изменения выполняются в системе зеркальных распределённых транзакций , которыми управляет координатор распределённых транзакций. Несмотря на простоту концепции и формулировки, возникает множество технических проблем, которые нигде ранее не были решены. В случае высокого параллелизма и конкуренции ресурсов порядок запросов на разных серверах может изменяться, что, в свою очередь, может приводить к изменению состава данных и к распределенным взаимоблокировкам. Также возникают сложности с падением линейной скорости примитивных операций. И, не решив проблемы оптимизации, данное решение сразу не подойдет для большинства систем. Одними из целевых показателей промышленного решения будет являться подключение до 20-и серверов в кластер с линейной просадкой времени операций не более чем на 10 % .

    В докладе будут рассмотрены эти и другие проблемы распределено-вычислительного кластера. В том числе, представлены примеры системы, для которых это будет максимально эффективным решением, а также описание архитектуры и демонстрация прототипа.