Диагностика производительности базы данных PostgreSQL / Diagnostics of PostgreSQL database performance
ЦТП ФОРС имеет более чем 30 летний опыт поддержки промышленных СУБД на основе Oracle, последние 9 лет мы оказываем услуги по PostgreSQL. Накопленную за много лет методику применяем в нашей работе. В докладе делаем обзор с примерами использования штатного инструментария диагностики производительности СУБД и ОС. Представляем собственный инструмент PGARM, и как он помогает нам вести диагностику замедлений, в том числе в реальном времени.
FORS Center of Technical Support with over 30 years of experience in supporting Oracle-based RDBMS has been providing support services for PostgreSQL-based DBMS for the last 9 years. We leveraged our extensive experience gained over many years while developing our PGARM tool. In the presentation we provide a comparison between standard tools for diagnosing DBMS and OS performance and our PGARM. Today we would like to present our own tool: PGARM and to demonstrate how it can help you diagnose slowdowns, including real time diagnostics.
Слайды
Слайды доступны участникам мероприятия, выполнившим вход в личный кабинет.
Видео
Видео доступно участникам мероприятия, выполнившим вход в личный кабинет
Другие доклады
-
Виктор Васильев Postgres Professional Архитектор решений
Snapshot Standby с BTRFS в работе с PostgreSQL
В докладе будет рассмотрена функциональность файловой системы BTRFS позволяющая реализовать Snapshot Standby в работе с PostgreSQL. В первой части доклада будет поверхностно рассказано про BTRFS, а во второй части доклада будут рассмотрено несколько кейсов использования Snapshot Standby на примерах.
-
Антон Дорошкевич ИнфоСофт Руководитель проектов
BiHА и 1С
Совсем недавно в релиз вышел встроенный отказоустойчивый кластер BiHА. 1С тоже имеет свою систему отказоустойчивого кластера. В докладе расскажу можно ли их поженить и как настроить так чтобы отработка отказа требовала минимального участия человека, а возможно не требовала его вообще.
-
Сергей Новиков ЕДИНЫЙ ЦУПИС Lead DBA
Оптимизация OLTP-нагрузки
В докладе представлен обобщённый опыт компании ЕДИНЫЙ ЦУПИС в вопросах оптимизации OLTP-запросов: • Как идентифицировать причины перегрузки сервера. • Какие настройки помогают улучшать планы и ускорять запросы, которые и так работают быстро. • Как лучше подготовить индексы и сами запросы. Также будут рассмотрены различные примеры деградации производительности из практики.
-
Владимир Сердюк Общество с ограниченной ответственностью «Кластерные технологии Софтпоинт» Ген. директор
Распределение транзакционной нагрузки в кластере серверов СУБД
Данный доклад представляет собой описание концепции и прототипа кластера СУБД, работающего по принципу Master-Master. Проблема синхронизации данных в таких системах ни в одном тиражном решении до сих пор не решена, поэтому масштабирование для OLTP-систем, где транзакционная нагрузка сильно превалирует над аналитической, решается до сих пор только усилением аппаратной части – добавить ядер/процессоров, добавить памяти, что зачастую бывает не самым рациональным решением. Напомню, что задача распределения аналитической нагрузки решается относительно просто с помощью создания дополнительных реплик и перенаправления запросов на чтение вне транзакций на другие реплики. В случае же транзакционной нагрузки, если применять аналогичный подход, возникают коллизии, например, типа «писатель-писатель», которые, если их не учитывать, могут привести к неверным данным в транзакциях. Концепция кластера распределённых вычислений на первый взгляд звучит просто: «Все запросы на изменение данных выполняются мгновенно на всех нодах (серверах кластера), а чтение выполняется локально». Специальный прокси-агент распарсивает запросы, и выполняет запросы на чтение локально, а запросы на изменение перенаправляются параллельно и асинхронно на все остальные ноды кластера. Все изменения выполняются в системе зеркальных распределённых транзакций , которыми управляет координатор распределённых транзакций. Несмотря на простоту концепции и формулировки, возникает множество технических проблем, которые нигде ранее не были решены. В случае высокого параллелизма и конкуренции ресурсов порядок запросов на разных серверах может изменяться, что, в свою очередь, может приводить к изменению состава данных и к распределенным взаимоблокировкам. Также возникают сложности с падением линейной скорости примитивных операций. И, не решив проблемы оптимизации, данное решение сразу не подойдет для большинства систем. Одними из целевых показателей промышленного решения будет являться подключение до 20-и серверов в кластер с линейной просадкой времени операций не более чем на 10 % .
В докладе будут рассмотрены эти и другие проблемы распределено-вычислительного кластера. В том числе, представлены примеры системы, для которых это будет максимально эффективным решением, а также описание архитектуры и демонстрация прототипа.