title

text

Павел Труханов
Павел Труханов okmeter.io CEO
16:00 05 февраля
22 мин

Мониторинг Postgres по USE и RED

Есть две методологии перформанс мониторинга: USE (Utilization, Saturation, Errors) Брендана Грегга и RED (Requests, Errors, Durations) от Тома Уилки. В докладе я хочу рассказать о том, как мы на них ориентировались и продолжаем ориентироваться, когда реализуем мониторинг Postgres в okmeter.io.

Слайды

Видео

Другие доклады

  • Вадим Подольный
    Вадим Подольный АО "РАСУ" Независимый эксперт
    45 мин

    Высоконагруженная распределенная система управления современной АЭС

    В докладе будет представлена новая платформа распределенной системы управления АЭС.

    Вы узнаете, как обеспечивается управление сложнейшими объектами автоматизации в мире. В режиме жесткого реального времени обеспечивается работа более 150 специальных подсистем, управляющих различными технологическими процессами АЭС, таких как система управления реактором мощностью выше 1000 МВт и турбиной весом более 2000 тонн. Более 100К источников данных от датчиков и до 500К расчетных параметров. 5 разновидностей физических процессов: нейтронная кинетика, гидродинамика, химия и радиохимия и физика прочности.

    При некоторых отклонениях вся система превращается в огромный источник DDoS полезной диагностической информации, которой всегда больше, чем способна переварить сеть и вычислительные ресурсы автоматизированной системы, что мешает нормальному управлению объектом. Вы узнаете, как мы «разруливаем» такие проблемы.

    Из доклада вы узнаете об аппаратной и программной архитектуре таких систем, узнаете, как обеспечивается резервирование и репликация данных в таких системах, зачем нужна избыточность данных и технологическое разнообразие. Как обеспечивается управление нагрузками, как устроен QoS. И что будет, если отключится система нормальной эксплуатации, как, например было на Фукусиме.

    Но мы все же про кодинг. Никаких SSD и HDD, только InMemory, структуры данных из десятков миллионов элементов, забудьте про кэш процессора, он не работает. Ваш новый Xeon 4-го поколения потерял все преимущества и превратился в "тыкву", поэтому закатываем рукава и ковыряемся в таймингах, жесточайшей аcинхронике и выжимаем из железа максимум. Кто слабое звено - процессор, память, ОС или сеть. Выясняем это.

  • Павел Молявин
    Павел Молявин 2ГИС Инженер Инфраструктуры
    45 мин

    Готовим PostgreSQL в эпоху DevOps. Опыт 2ГИС

    После перехода к микросервисной архитектуре для PostgreSQL наступили «темные времена». Каждая из десяти команд действовала самостоятельно — ставила свою базу данных, выбирала версию, писала деплои. Пришло время создать общий инструмент.

    Мы собрали кластер на основе PostgreSQL, repmgr, PgBouncer, Barman. Несмотря на то, что система получилась достаточно сложной для неподготовленного специалиста, нам удалось создать повторяемый деплой, который позволяет быстро разворачивать рабочую систему. А также мы смогли консолидировать все базы в нескольких кластерах и снять с команд обязанности по администрированию.

    Failover работает, мы проверяли :-)

  • Дмитрий Юхтимовский
    Дмитрий Юхтимовский Gilev.ru технический лидер
    22 мин

    Магические фокусы с последующим разоблачением (1С+PG)

    Магические фокусы с последующим разоблачением (1С+PG):

    • Фокус первый. Как убедить бухгалтерию купить новый сервер.
    • Фокус второй. Как показать, что MS SQL быстрее PostgreSQL.
    • Фокус третий. Как показать, что PostgreSQL быстрее MS SQL Server.

  • Александр Кузьменков
    Александр Кузьменков Postgres Professional Программист
    45 мин

    Новые планы выполнения запросов в PostgreSQL 11 и будущих версиях

    Одна из важных задач СУБД -- по декларативному SQL-запросу построить эффективный план его выполнения, используя разные алгоритмы сканирования и объединения таблиц. Над улучшением планирования запросов идёт непрерывная работа. Какие методы применяет PostgreSQL, чтобы получить эффективный план, что нового в этой области в версии 11, и что сейчас находится в разработке? Например, при планировании запроса можно удалять ненужные соединения, или сводить внешние и полусоединения к внутренним. Есть патчи, позволяющие выполнять merge join по пересечению интервалов, или улучшающие оценку селективности соединения с помощью многоколоночной статистики. Если говорить о сканировании отдельных таблиц, покрывающие индексы позволяют чаще использовать index-only scan. Инкрементальная сортировка и более точная оценка стоимости сортировки улучшают планы, где нужен сортированный вывод, например, для GROUP BY и ORDER BY или merge join. Мы обсудим эти и другие подобные оптимизации, которые уже реализованы или находятся в разработке.