![Дмитрий Юхтимовский Дмитрий Юхтимовский](/media/2018/12/26/фото Юхтимовский PostgreSQL mini.jpg.180x180.jpg)
Магические фокусы с последующим разоблачением (1С+PG)
Магические фокусы с последующим разоблачением (1С+PG):
- Фокус первый. Как убедить бухгалтерию купить новый сервер.
- Фокус второй. Как показать, что MS SQL быстрее PostgreSQL.
- Фокус третий. Как показать, что PostgreSQL быстрее MS SQL Server.
Слайды
Видео
Другие доклады
-
TTatsuro Yamada NTT Comware Ведущий специалист по базам данных
Настройка автопланировщика с использованием цикла обратной связи
При OLAP и пакетной обрабокте данных часто наблюдается ситуация, что чем сложее запрос (содержит много джойнов, фильтров и аггрегативных функций), тем выше вероятность ошибок в оценке количества строк, в результате чего планировщик выбирает неэффективный план исполнения запроса.
Для того, чтобы решить эту проблему, я разработал инструмент под названием pg_plan_advsr - это расширение для PostgreSQL, которое исправляет ошибки оценки путем неоднократного возвращения в планировщик информации, собранной в ходе исполнения запроса.
Расширение содержит три фичи:
- Автоматическая оптимизация плана запроса за счет неоднократного возвращения информации о ходе выполнения запроса в планировщик.
- Сохранение всех выработанных при оптимизации планов запросов в таблицу истории.
- Создание и сохранение хинтов оптимизатора с тем, чтобы иметь возможность воспроизвести выработанные планы исполнения запросов в процессе настройки.
Я верифицировал эффективность pg_plan_advsr путем запуска join order benchmark (JOB) на PG 10.4, в ходе чего наблюдалось сокращение времени исполнения запроса до 50% от первоначального. Таким образом, расширение будет полезно пользователям, который хотят настроить планировщик для OLAP и пакетной обработки данных.
В ходе презентации я расскажу о следующие моментах:
- Принципы построения и архитектура pg_plan_advsr.
- Подробная информация о результатах тестирования JOB.
- Направления улучшений в будущем.
- Совместное использование расширений aqo и pg_plan_advsr together (экспериментальное).
-
Алексей Лустин SilverBulleters, LLC CTO
Анализ проблемных запросов как средство регулярного рефакторинга кода 1С
- Принципы поиска проблемных запросов в PostgreSQL
- Оценка гипотетических индексов и степени их влияния на планы запросов
- Наиболее часто встречающиеся ошибки у 1С-программистов
- Базовые методы рефакторинга кода с учетом особенностей PostgreSQL
- Хранение аналитической информации журнала работы PostgreSQL для оценки качества рефакторинга
-
Андрей Бородин Яндекс Разработчик
Резервные копии с WAL-G. Что там в 2019?
Доклад будет состоять из 3 частей: 1. Экспресс-настройка PITR в Облако 2. Последние доработки бекапостроения в WAL-G 3. Почему это может быть нужно или вредно для вашего типа требований и нагрузки.
-
Павел Труханов okmeter.io CEO
Мониторинг Postgres по USE и RED
Есть две методологии перформанс мониторинга: USE (Utilization, Saturation, Errors) Брендана Грегга и RED (Requests, Errors, Durations) от Тома Уилки. В докладе я хочу рассказать о том, как мы на них ориентировались и продолжаем ориентироваться, когда реализуем мониторинг Postgres в okmeter.io.