Architecting petabyte-scale analytics by scaling out Postgres on Azure with Citus
The story about powering a 1.5 petabyte analytics application with 2816 cores and 18.7 TB of memory in the Citus cluster at the Microsoft. The Windows team measures the quality of new software builds by scrutinizing 20,000 diagnostic metrics based on data flowing in from 800 million Windows devices. At the same time, the team evaluates feedback from Microsoft engineers who are using pre-release versions of Windows updates. At Microsoft, the Windows diagnostic metrics are displayed on a real-time analytics dashboard called “Release Quality View” (RQV), which helps the internal “ship-room” team assess the quality of the customer experience before each new Windows update is released. Given the importance of Windows for Microsoft’s customers, the RQV analytics dashboard is a critical tool for Windows engineers, program managers, and execs.
Слайды
Другие доклады
-
Álvaro Hernández OnGres
StackGres: Cloud-Native PostgreSQL on Kubernetes
An enterprise-grade PostgreSQL requires many complementary technologies to the database core: high availability and automated failover, monitoring and alerting, centralized logging, connection pooling, etc. That is, a stack of components around PostgreSQL. Kubernetes has enabled a new model to deploy software abstracting away the infrastructure. However, containers are not lightweight VMs, and the packing of software paradigms that work on VMs are not valid on containers/Kubernetes. How should be PostgreSQL and its stack be deployed on Kubernetes? Enter StackGres. An open source software that is the result of re-engineering PostgreSQL to become cloud native. Join this talk to learn and see demos of how to generate PostgreSQL minimal containers; how the sidecar pattern is used (abused) to integrate PostgreSQL’s stack components, and how the networking and storage are handled. More info: stackgres.io.
-
Christopher Travers DeliveryHero SE Principle Engineer
Introducing Bagger: Massive Application Log Management on PostgreSQL
This talk discusses the open source components we use at Adjust to manage a massive number (5+PB) of application log messages on PostgreSQL in a massively multi-parallel way. It provides both a use case for PostgreSQL in a big data (high volume/velocity/variety) environment, and can be used to show the power of PostgreSQL with JSONB, GIN, and more.
This talk covers the capabilities of the components in depth, sufficient to inspire similar solutions.
-
Дмитрий Гребенщиков ООО "Диасофт" Директор по импортозамещению
Особенности миграции инженерного ПО с Oracle на PostgreSQL
Дмитрий расскажет об опыте применения автоматизированного мигратора разработанного специалистами компании «Диасофт» для перевода российских систем на PostgreSQL.
На примере миграции инженерного ПО ЛОЦМАН (компания АСКОН) раскроет ключевые особенности миграции, расскажет о проблемах миграции и путях их решения.
А также о методах оптимизации производительности смигрированных хранимых процедур. -
Антон Нечеухин Miro Technical QA lead
Инструмент как код: тестируем Postgres
На мастер-классе научимся проводить быстрые нагрузочные тесты баз данных Postgres: оптимизаций конфигов базы, структуры данных, индексов, настроек ОС и т. д. Для этого создадим код, из него поднимем инфраструктуру для теста и проведём сам тест. В результате получим гибкий инструмент в коде, к которому можно прикрутить любой мониторинг и за который не надо платить большие деньги, т.к стенд создаётся за 7 минут в пустой AWS учётке и убивается после проведения тестов. Для этого мастер-класса есть важная подготовка, которую нужно сделать заранее, чтобы в полной мере попробовать все, что спикер хочет предложить. Один шаг не быстрый - нужно сделать триальную учетную запись в AWS. Для этого требуется подтверждение регистрации от Amazon, которое они делают в течении 24 часов (если вы ранее работали в AWS, и у вас есть учетка - это хорошо, если нет - нужно пройти этот путь) Также, лучше заранее поставить последние версии ansible и terraform.