title

text

Алексей Лесовский
Алексей Лесовский PostgreSQL Consulting LLC Администратор баз данных
15:00 03 февраля
180 мин

Потоковая репликация на практике.

Потоковая репликация это одна из тех прорывных технологий которая вывела PostgreSQL на совершенно новый уровень. Сочетая в себе легкость настройки, высокую производительность и почти неограниченную масштабируемость потоковая репликация является эффективным инструментом, а ее наличие становится неотъемлемым компонентом любого постгресового "сетапа". Более того, в процессе дальнейшего развития PostgreSQL, потоковая репликация продолжает развиваться и обзаводиться новыми функциями (каскадные конфигурации, слоты репликации) вплоть до того, что на данном этапе своего развития, потоковая репликация позволяет выстраивать bi-directional replication конфигурации.

Из доклада вы узнаете о том, как устроена потоковая репликация снаружи и внутри, и о практических аспектах эксплуатации потоковой репликации включая такие вещи как настройка, сопровождение, мониторинг, поиск и устранение проблем.

Участникам мастер-класса следует скачать себе образ виртуальной машины для KVM, Virtual box или VMWare, распаковать его (gzip2) и запустить виртуальную машину.

Если у Вас нет ни одной из перечисленных программ для виртуализации, то нужно запустить виртуальную машину с CentOS 7 и установленным postgresql из оф.репозитория yum.postgresql.org.

Ссылка на образы для скачивания: https://goo.gl/Yy4UzH

Слайды

Видео

Другие доклады

  • Юрий Соболев
    Юрий Соболев ООО "МедиаТех" Генеральный Директор

    PostgreSQL как ядро биржи интернет-рекламы Adsterra.com

    Общая информация об adsterra.com

    • adsterra.com - биржа интернет рекламы
    • В данный момент имеет порядка 150 млн показов баннеров в сутки.120 положение в alexa.com на 30.11.2015. Записывает в postgresql до 10000(и больше) событий в секунду. Читает до 5000
    • 20 отдельных серверов под БД с различными ролями
    • Активно использует логику внутри БД. Много PL/pgsql и SQL функций.

    Причины выбора Postgresql

    • История создания adsterra.com.
    • Сжатые сроки отведенные на разработку определили выбор в пользу готовых систем хранения данных.
    • Postgresql привлек своей бесплатностью и рядом фишек, которых не было у конкурентов. Некоторые в итоге оказались полезными, некоторые не очень.

    Описание архитектуры проекта

    • Общая схема взаимодействия
    • Роли групп серверов
    • Использование различных методов для взаимодействия серверов: Потоковая репликация, Londiste, postgres_fdw. Плюсы и минусы каждого.
    • Шардинг
    • Использование SQL под OLTP

    Проблемы возникшие в ходе разработки/использования и варианты решения:

    • Материализованные представления. Проблемы с обновлением и поддержкой. Что сделали в итоге.
    • Londiste. Какие проблемы были решены в ходе разработки, а какие так и не были.
    • Проблемы потоковой репликации.
    • Автовакум и вакум.
    • Странности планировщика.
    • Конкурентный доступ.

    Крутые штуки Postgresql, которые сильно помогли

    • Массивы, intarray и GIN индексы. Но не все гладко.
    • Партиционирование. Но не все есть, что хочется.
    • PL/pgsql. Но не всегда следует его использовать.
    • unlogged таблицы. Но с умом.

    Текущие разработки и нерешенные проблемы

    • Реализация колоночной аналитики штатными средствами.
    • Проблемы странных планов запросов.
    • Логическая репликация мечты
    • Мультимастер...

  • Валентин Гогичашвили
    Валентин Гогичашвили Zalando Head of Data Engineering

    Интеграция данных в мире микросервисов

    Стремительно стартовав в 2008 году, Zalando продолжает развиваться, не снижая скорости. На пути от скромного стартапа к многонациональной корпорации возникает множество сложнейших задач, особенно для Zalando Technology. Команда из 900 человек, распределенных в Берлине, Дортмунде, Дублине и Хельсинки, продолжает расти, планируя еще до конца 2016 года увеличиться в два раза.

    Столь динамичный рост научил нас оперативно менять процессы и перестраивать организационную структуру в зависимости от актуальных задач. С марта 2015 года мы применяем Radical Agility — новейшую стратегию, провозглашающую Автономность, Целеустремленность и Мастерство (Autonomy, Purpose and Mastery) ключевыми принципами — для сплоченной работы команд программистов и менеджеров продукта.

    Реализуя автономность, команды теперь могут самостоятельно выбирать стеки технологий для разработки своих продуктов. Микросервисы, использующие для коммуникации RESTful API, предполагают снижение стоимости интегрирования между такими командами. Изолированные AWS аккаунты, при поддержке разработанной в Zalando open-source PaaS платформы (STUPS.io), дают возможность каждой автономной команде использовать нужное ей количество вычислительных ресурсов для проведения экспериментов и выкатывания новых функций.

    Возникает другая проблема с микросервисами, изолированными в собственных AWS аккаунтах: команды хранят данные локально, недоступно для централизованных процессов сбора данных. В такой среде довольно сложно автоматизировать ETL процессы для дальнейшего анализа данных или интегрировать данные, принадлежащие различным сервисам.

    Новые возможности логической репликации PostgreSQL обеспечивают потоковую пересылку информации об изменениях в базах данных в интеграционные системы, представляя ее там в удобном для обработки и анализа виде.

    В моем докладе я расскажу об open-source прототипе, разработанном в Zalando для сбора информации из изолированных PostgreSQL баз данных, применяющем возможности потоковой логической репликации в PostgreSQL с преобразованием данных для использования в разных системах их обработки (Data Lake, Operational Data Store, системы вычисления КПЭ или автоматического мониторинга за процессами). Слушатели узнают, как именно можно использовать логическую потоковую репликацию в мире микросервисов.

  • Ильдар Мусин
    Ильдар Мусин Postgres Professional Разработчик
    22 мин

    Секционирование без границ

    Механизм секционирования в Postgres имеет ряд ограничений, которые не позволяют использовать концепцию секционирования в полной мере. Среди таких ограничений можно выделить неэффективность планирования запросов для секционированных таблиц (линейный рост времени планирования при увеличении количества секций), отсутствие HASH-секционирования, необходимость ручного управления секциями. Однако, средства расширяемости Postgres предоставляют разработчику широкие возможности, позволяющие обойти некоторые ограничения. В докладе будет рассказано, как внедрившись в код планировщика удалось оптимизировать время планирования запросов. Так метод бинарного поиска позволяет добиться логарифмического роста времени планирования для RANGE-секционированных таблиц. Поэтому использование даже тысяч секций не будет приводить к существенным накладным расходам. Также удалось реализовать HASH-секционирование с близким к константному времени планирования.

  • Д
    Дмитрий Мельник ИСП РАН разработчик
    22 мин

    Ускорение исполнения запросов в PostgreSQL с использованием JIT-компилятора LLVM

    В настоящее время в PostgreSQL для исполнения SQL-запросов используется интерпретатор. Это приводит к накладным расходам, связанным с неявными вызовами функций-обработчиков и проверок, которых можно было бы избежать при создании исполняемого кода "на лету" (JIT-компиляции) под конкретный SQL-запрос: в этом случае во время выполнения уже известна структура используемых таблиц и типы данных. Особенно это актуально для сложных запросов, где производительность процессора является основным ограничением. В настоящий момент существует два известных проекта, реализующих JIT-компиляцию в PostgreSQL: коммерческое решение Vitesse DB и open-source проект PGStorm. В первом проекте за счет использования LLVM JIT авторам удается получить ускорение до 8 раз на тестах из набора TPC-H. Второй проект реализует JIT-компиляцию запроса с использованием CUDA для исполнения его на GPU, что позволяет ускорить выполнение некоторых типов запросов на порядок.

    Наша работа посвящена добавлению поддержки JIT-компиляции SQL-запросов в PostgreSQL с использованием компиляторной инфраструктуры LLVM. В докладе будет подробно рассмотрено, как JIT-компиляция может быть использована для ускорения различных этапов исполнения SQL-запросов, а также особенности трансляции SQL-запросов в LLVM-биткод для получения эффективного исполняемого кода. Также будут представлены предварительные результаты тестирования JIT-компилятора на наборе тестов TPC-H.