Эффективная работа с 10+ ПБ данных в PostgreSQL или новая парадигма построения "бережливых" инфраструктур данных для Data-Driven Enterprise
Алексей расскажет о технических деталях и опыте применения подхода экстремальной нормализации данных для создания инфраструктур данных с уникальными потребительскими характеристиками. В сравнении с решениями лидеров рынка такие инфраструктуры обладают, например, такими преимуществами, как: - оперативная обработка 10 ПБ данных и больше, - в 2-6 раз более высокая производительность, - сквозная 100% консистентность данных, - практически линейная горизонтальная масштабируемость, - в 4-10 более низкая стоимость владения, - и т. д. Изложенный подход уже нашел применение за пределами России в решениях для операторов связи, ритейла, финтеха, современном производстве (Industry 4.0, индустриальный IoT), в государственном секторе.
ВИДЕО
Слайды
Другие доклады
-
Ильдар Мусин Postgres Professional РазработчикДмитрий Иванов Postgres Professional Developer
Секционирование с pg_pathman
Секционирование в PostgreSQL - давно ожидаемый функционал. И хотя в Postgres возможно реализовать секционирование через наследование, такой подход имеет ряд недостатков, таких как необходимость вручную создавать секции и поддерживать триггеры, значительные накладные расходы на планирование и отсутствие оптимизаций времени выполнения. В докладе мы расскажем про расширение pg_pathman, над которым мы работаем. pg_pathman поддерживает HASH и RANGE секционирование и выполняет оптимизации на этапах планирования и исполнения, поддерживает быструю вставку за счет отказа от триггеров в пользу Custom Node, содержит функции для управления секциями (add, split, merge и др.), поддерживает FDW, неблокирующую миграцию данных и другие возможности. Мы также расскажем об интеграции pg_pathman в PostgresPro Enterprise Edition и поддержку Oracle-подобного синтаксиса для секционирования. В завершение мы расскажем о новых возможностях секционирования в PostgreSQL 10, что реализовано и пути дальнейшего развития.
ВИДЕО
-
Филипп Дельгядо ООО «Лектон» архитектор департамента
Сложные структуры без ORM
Я очень люблю сложные предметные области, строгую типизацию в приложении и 3НФ, но очень не люблю ORM. Поэтому мне приходится активно использовать хранение сериализованных структур в json-полях (даже до появления типа json). В докладе расскажу о некоторых особенностях работы с хранением сложных объектов внутри полей СУБД, расскажу где и как подстелить себе соломку и какие проблемы могут возникнуть.
ВИДЕО
-
Александр Коротков Postgres Professional Руководитель разработки
RUM-индексы и их применение
Я представлю новый метод доступа, который расширяет имеющиеся возможности GIN-индексов, используя дополнительную информацию, хранящуюся в списке/дереве идентификаторов. Например, дополнительная информация о позициях позволяет новому методу доступа возвращать результаты по релевантности, что может значительно сократить время исполнения полнотекстовых запросов. Это также может ускорить фразовый поиск, так что данный метод будет весьма эффективным при полнотекстовом поиске. Сохранение временных меток открывает перед нами несколько интересных возможностей – мы можем отсортировать результаты по времени (например, свежие статьи, удовлетворяющие полнотекстовому запросу) на основе временных меток как таковых или сохраненных указателей, упорядоченных по временным меткам. Оба способа обеспечивают на порядок большее ускорение для таких типов запросов.
-
Антон Сикерин ООО "Транспортная интеграция" Специалист по транспортному планированию, Инженер-программист
PostgreSQL в задачах транспортной аналитики при проектировании мастер-плана для ЧМ-2018 в Екатеринбурге
1) О Чемпионате мира по футболу 2018 и поставленных задачах; 2) Инструментарий отдела моделирования и аналитики; 3) Аналитика пассажиропотоков аэропорта Кольцово и железнодорожного транспорта дальнего и ближнего сообщения (Яндекс.Расписания); 4) Анализ населенности и занятости населения (2ГИС); 5) Прокладка маршрутов клиентских групп с автоматическим выводом метаинформации и сборка отчетных материалов (PostgreSQL + QGIS + Python + LaTeX); 6) Развертывание карт-сервера для предоставления доступа к маршрутам заказчику (Ubuntu + PostGIS + QGIS-Web-Client)
ВИДЕО