Мониторинг PostgreSQL в Авито, с примерами
Небольшой доклад о том как Avito собирает и мониторит нагрузку на базы данных. Отправка метрик из хранимых процедур в Graphite. Сбор метрик pg_stat* и отображение их в Grafana. Примеры из жизни.
ВИДЕО
Слайды
Другие доклады
-
Дмитрий Белобородов UIS, CoMagic Технический директор
Опыт использования PostgreSQL в проектах UIS, CoMagic
Мы используем PostgreSQL с 2003 года и прошли путь от базы в пару гигабайт до кластера с текущим размером более 5Тб. Текущие кол-во таблиц > 700, число хранимых процедур ~1500. Чем готовы поделиться: - рассказать о проблемах, с которыми пришлось сталкиваться на разных этапах развития и найденными решениями - наработанными практиками администрирования - мы работаем с несколькими базами, которые тесно связаны друг с другом, используем для этого свое расширение - у нас работает несколько команд, и есть выработанная методика и инструменты, которые позволяют им не мешать друг другу - мы используем много различных стендов для тестирования, готовы рассказать по какому принципу и как мы их поднимаем - ну, и конечно, про оптимизацию, поиск узких мест и ситуаций, с которыми нам приходится сталкиваться при нагрузках
ВИДЕО
-
Дмитрий Кремер МИА "Россия Сегодня" Администратор баз данных
Сборка PostgreSQL из исходников для системных администраторов
- зачем собирать PostgreSQL из исходников?
- выбор опций сборки
- зависимости
- создание системного окружения
- базовые настройки Linux для работы PostgreSQL
- дополнительное ПО, облегчающее жизнь администратора PostgreSQL
ВИДЕО
-
Дмитрий Юхтимовский Gilev.ru технический лидер
Поиск проблемного кода 1С на СУБД PostgreSQL
- Особенности взаимодействия 1С:Предприятие 8 и PostgreSQL 9 1.1 Изменения в редакциях платформы 1С 1.2 Схемы v81c_data и v81c_index 1.3 Трансляция запросов 1С в SQL 1.4 События технологического журнала 1С для диагностики PostgreSQL
- Анализ запросов, вызывающих проблемы производительности в PostgreSQL 2.1 Бесплатный инструмент для автоматизации разбора логов 2.2 Правило Парето на практике 2.3 Установка и настройка инструмента 2.4 Практический пример оптимизации запроса 2.4.1 Проблема в запросе PostgreSQL 2.4.2 Выяснение нерациональных операций в запросе 2.4.3 Способы устранения неоптимальностей
- Статистка PostgreSQL для диагностики производительности 3.1 Сравнение с возможностями MS SQL Server, различия 3.2 Диагностика блокировок 3.3 Диагностика рабочей нагрузки 4 Примеры из практики команды gilev.ru
-
Иван Панченко Postgres Professional рзаместитель генерального директора
JSON, JSONB, JSQuery
Мастер-класс рассказывает о различных практических паттернах использования JSON и связанной с ним функциональности в PostgreSQL. Речь пойдет о хранении данных в формате JSON, извлечении, изменении и поиске этих данных, возможностях, которые JSON в обычных SQL запросах, и использовании JSON в хранимых процедурах на различных языках. Ряд задач можно будет решить в предоставленных виртуальных машинах.