title

text

Masahiko Sawada
Masahiko Sawada NTT OSS Center
12:00 16 марта
45 мин

Встроенный шардинг: текущее состояние и будущее

Шардингом базы данных называют распределение данных по большому количеству серверов для повышения производительности при работе с большими объемами данных. С появлением технологии Foreign Data Wrappers (FDW), стало возможным рассматривать шардинг в постгресе при разумном объеме изменений программного кода. Я занимаюсь улучшением инфраструктуры FDW, в т.ч. наследованием внешних таблиц и push-down запросов, что позволяет постгресу эффективно исполнять распределенные запросы через FDW. В этом докладе мы рассмотрим шардинг на FDW и его сценарии использования, затем я продемонстрирую, как организовать шардинг, и покажу, что для этого было сделано в постгресе. В заключение мы рассмотрим основные планы на будущее - в первую очередь, это асинхронное исполнение запросов и поддержка распределенных транзакций.

слайды

Видео

Другие доклады

  • Камиль Исламов
    Камиль Исламов Stickeroid Ai CTO
    22 мин

    Совместное использование хранимых процедур Postgres и ORM на примере Django

    Приводятся некоторые примеры и приёмы в проектировании архитектуры Web-приложений с совместным использованием технологий ORM с применением хранимых процедур Postgres на примере Python Django. Рассматриваются варианты реализации бизнес-логики в рамках СУБД с сохранением преимуществ Django и применения встроенной админ-панели.

    ВИДЕО

  • Дмитрий Мельник
    Дмитрий Мельник ИСП РАН разработчик
    22 мин

    Динамическая компиляция SQL-запросов в PostgreSQL с использованием LLVM JIT

    В данный момент в PostgreSQL для исполнения SQL-запросов применяется интерпретатор, реализующий модель итераторов (Volcano-модель). В то же время можно добиться существенного ускорения, выполняя динамическую компиляцию запроса «на лету». В этом случае можно генерировать код, специализированный для конкретного SQL-запроса, а также применять компиляторные оптимизации, учитывая, что во время выполнения уже известна структура используемых таблиц и типы данных. Такой подход особенно актуален для сложных запросов, скорость выполнения которых ограничена производительностью процессора.

  • Алексей Мергасов
    Алексей Мергасов НОКСА Дата Лаб Директор по разработке
    22 мин

    Эффективная работа с 10+ ПБ данных в PostgreSQL или новая парадигма построения "бережливых" инфраструктур данных для Data-Driven Enterprise

    Алексей расскажет о технических деталях и опыте применения подхода экстремальной нормализации данных для создания инфраструктур данных с уникальными потребительскими характеристиками. В сравнении с решениями лидеров рынка такие инфраструктуры обладают, например, такими преимуществами, как: - оперативная обработка 10 ПБ данных и больше, - в 2-6 раз более высокая производительность, - сквозная 100% консистентность данных, - практически линейная горизонтальная масштабируемость, - в 4-10 более низкая стоимость владения, - и т. д. Изложенный подход уже нашел применение за пределами России в решениях для операторов связи, ритейла, финтеха, современном производстве (Industry 4.0, индустриальный IoT), в государственном секторе.

    ВИДЕО

  • Masahiko Sawada
    Masahiko Sawada NTT OSS Center
    45 мин

    Встроенный шардинг: текущее состояние и будущее

    Шардингом базы данных называют распределение данных по большому количеству серверов для повышения производительности при работе с большими объемами данных. С появлением технологии Foreign Data Wrappers (FDW), стало возможным рассматривать шардинг в постгресе при разумном объеме изменений программного кода. Я занимаюсь улучшением инфраструктуры FDW, в т.ч. наследованием внешних таблиц и push-down запросов, что позволяет постгресу эффективно исполнять распределенные запросы через FDW. В этом докладе мы рассмотрим шардинг на FDW и его сценарии использования, затем я продемонстрирую, как организовать шардинг, и покажу, что для этого было сделано в постгресе. В заключение мы рассмотрим основные планы на будущее - в первую очередь, это асинхронное исполнение запросов и поддержка распределенных транзакций.