Басня про тестирование и postgres
Однажды вот Питон и Слон
Вести тестирование взялись.
И вместе все в него впряглись!
В нашей компании (Postges Professional) разрабатываются разные проекты: multimaster, pg_probackup, pg_pathman, pg_shardman, RUM, и другие. Совладать со всей этой оравой весьма непросто, поэтому нам необходим инструмент, который способен облегчить и ускорить написание всевозможных тестов.
В данном докладе мы расскажем о фреймворке testgres, написанном на Python, который уже позволил решить множество проблем и протестировать функциональность, которую нельзя так просто покрыть прямолинейными регрессионными тестами.
Вы узнаете, как при помощи нескольких строчек кода запускать узлы PostgreSQL, настраивать всевозможную репликацию и создавать бекапы, меняя параметры на лету, и про многое другое. Также мы расскажем, как эти возможности позволяют нам проверять "самые труднодоступные места" и улучшать качество наших продуктов.
Мы стремимся сделать testgres фреймворком для проведения функциональных тестов пользовательских запросов, хранимых процедур и прочей серверной логики, привнося практику TDD на уровнь разработки БД.
Слайды
Видео
Другие доклады
-
Анатолий Солдатов Компания - ЗАО ЛАНИТ Старший разработчик баз данных
Как деплоить в 5 раз быстрее или рассказ о нашей реализации параллельного выполнения миграций в Liquibase
Liquibase - очень удобный инструмент последовательных миграций баз данных, используемый как на наших проектах, так и в большом числе других проектов и фреймворков. Он позволяет держать код базы вместе с кодом приложения в VSC, отслеживать попытки повторных миграций и много-много чего еще. Но рано или поздно проект вырастает, данные занимают терабайты, а liquibase все еще накатывает миграции последовательно.
Мы не смогли позволить себе деплоиться по 100 часов и придумали тулзу (фреймворк) для liquibase, которая расширяет его возможности и позволяет выполнять паралллельно целый ряд скриптов или разбивать одну большую миграцию на маленькие партиции и параллельно мигрировать их.
-
Егор Рогов Postgres Professional эксперт
Мастер-класс: Больше индексов, хороших и разных
"Не мог он GIN от SP-GiST-а, как мы ни бились, отличить", говорил классик. А вы можете? Этот мастер-класс посвящен индексам, которые хоть и не так часто используются, как обычное B-дерево, но могут сильно выручить в трудную минуту. Мы посмотрим, как устроены эти индексы и в каких случаях они могут быть успешно применены. Заодно поговорим и об особенностях индексного доступа в PostgreSQL. Чтобы провести время с пользой, от слушателей потребуется некоторое знакомство с PostgreSQL и умение читать планы несложных запросов.
Материалы мастер-класса
Резервную копию БД с демонстрационными данными можно скачать тут:
- Восстановление с помощью pg_restore (338 MB)
-
Олег Бартунов Postgres Professional генеральный директорНикита Глухов Postgres Professional Разработчик
"Умное" индексирование jsonb
PostgreSQL имеет репутацию универсальной СУБД,то есть базы данных, с которой можно стартовать практически любой проект, так как она имеет богатую функциональность,отличную репутацию и большое сообщество. Ее расширяемость позволяет добавлять недостающие функции силами прикладных программистов без остановки системы.
Я расскажу про то, как мы в Postgres Professional улучшили работу с индексами, а именно, добавили возможность использования параметров для их создания. В качестве примера, я расскажу про "умное" индексирование jsonb с помощью нашего расширения jsquery. "Умное" индексирование означает, что можно задавать подмножество jsonb для индексирование с помощью jspath,нового типа данных jsquery, который можно будет указывать в качестве параметра при создании индекса. Таким образом, индекс будет меньше,что положительно скажется на производительности запросов и лучшей конкурентности. Кроме того, параметры к оп классам позволят гибче работать с уже существующими индексами, а также помогут при индекскации jsonb с помощью jsonpath из ожидаемого SQL/JSON.
-
Алексей Лесовский Data Egret PostgreSQL DBA
Давайте отключим vacuum?!
Такой призыв часто возникает, когда в PostgreSQL возникают проблемы, и главным подозреваемым оказывается vacuum. По опыту, многие наступают на эти грабли, и мне с коллегам по Data Egret нередко приходится разгребать последствия, так как потом всё становится ещё хуже. Но если обратить внимание на сам vacuum, то, пожалуй, нет такого человека, который бы использовал Postgres, и при этом ничего не знал про вакуум. Ведь история вакуума начинается относительно давно, и в интернете можно найти массу как старых, так и новых постов про вакуум, объемные дискуссии в списках рассылки. Несмотря на то, что тема вакуума подробно описана в официальной документации к PostgreSQL, новые посты и новые дискуссии будут появляться и дальше. Возможно, поэтому с вакуумом связано очень много мифов, баек, страшилок и заблуждений. Между тем, вакуум является одним из важнейших компонентов PostgreSQL, и его работа напрямую сказывается на производительности. В одном докладе невозможно рассказать про вакуум абсолютно всё, но я бы хотел раскрыть ключевые моменты, связанные с вакуумом, такие как его внутреннее устройство, основные подходы к его настройке, наблюдение за производительностью, мониторинг, и что делать в случае, когда вакуум - главный подозреваемый во всех бедах. Ну и, конечно же, хочется развеять распространенные мифы и заблуждения, связанные с вакуумом.