title

text

Алексей Лустин
Алексей Лустин SilverBulleters, LLC CTO
17:15 07 февраля
45 мин

Docker, PostgreSQL, Продуктив ....

Я бы хотел поделиться наработками в части использования PostgreSQL в докерезированных средах, рассказать, с какими особенностями вам придется столкнуться и какие дополнительные инструменты для этого понадобятся.

  • Какие проблемы решает Docker для PostgreSQL, например PostgreSQLPro.9.6
  • Как работать команде ИТ в условиях использования Docker на разработческих, приемочных и продуктивных контурах
    • Использование хранилища образов и серверов сборок для тестирования самого образа
  • С чем придется столкнуться в продуктиве
    • В части сетевой активности
    • Организации персистентных хранилищ для Docker
    • Дополнительных служб и сервисов
    • В части балансировки и отказоустойчивости
  • Как запустить у себя приложения, использующие PostgreSQL, такие как:
    • SonarQube
    • Gitlab
    • База 1С

Слайды

Видео

Другие доклады

  • Максим Соболевский
    Максим Соболевский JetBrains Менеджер по марткеингу
    45 мин

    DataGrip: IDE для PostgreSQL от JetBrains

    JetBrains 15 лет производит среды разработки для работы со многими языками программирования. Самая популярная из них – IntelliJ IDEA для java, но она поддерживает и базы данных. В какой-то момент мы решили, что эту функциональность и глубокий опыт компании в работе с языками можно привнести и в мир SQL – так появилась среда разработки DataGrip. В докладе я расскажу о том, как DataGrip помогает писать код и работать с данными быстро, как расширить самому функциональность инструмента и постараюсь выяснить, какие проблемы в инструментарии актуальны для российского PostgreSQL сообщества.

  • Андрей Сальников
    Андрей Сальников Data Egret DBA
    45 мин

    Практика обновления версий PostgreSQL

    В большинстве своем, системные администраторы и ДБА бояться как огня делать мажорные обновления версий баз данных (RDBMS), особенно если эта база данных в эксплуатации и имеет достаточно высокую нагрузку. Главной причиной тому некоторый даунтайм базы данных, который всегда подразумевается при планировании таких работ.

    На практике, такого рода upgrade занимает довольно длительное время и зачастую администраторам с малым опытом подобных операций приходится откатываться на старую версию баз данных из-за достаточно банальных ошибок, которые можно было бы избежать еще на этапе подготовки.

    В Data Egret мы накопили огромный опыт проведения мажорных апгрейдов PostgreSQL в проектах, где нет права на ошибку. Я поделюсь своим опытом и расскажу о следующих шагах процесса: как правильно подготовиться к upgrade-у PostgreSQL? что необходимо сделать на этапе подготовки? как запланировать последовательность действий на сам upgrade? как провести процедуру upgrade-а успешно, без возврата на предыдущую версию бд? как минимизировать или вообще избежать простоя всей системы во время upgrade-а? какие действия необходимо выполнить после успешного upgrade-а PostgreSQL? Я также расскажу про две наиболее популярные процедуры апгрейда PostgreSQL - pg_upgrade и pg_dump/pg_restore, плюсы и минусы каждого из методов и расскажу про все типичные проблемы на всех этапах этой процедуры, и как их избежать.

    Доклад будет интересен как новичкам так и тем ДБА которые уже давно работают с PostgreSQL, но хотят побольше узнать о том как правильно планировать и проводить upgrade максимально безболезненно.

  • Александр Алексеев
    Александр Алексеев Postgres Professional Software Developer
    45 мин

    PostgreSQL и пожатые документы

    Одно из преимущество документо-ориентированных баз данных, таких как MongoDB и Cochbase, перед РСУБД заключается в возможности изменять схему данных легко, быстро и часто. Традиционный подход мира РСУБД заключается в использовании дорогостоящего ALTER TABLE, медленной миграции существующих данных, и подобных вещей. Этот подход часто слишком медлен и неудобен для разработчиков приложений.

    Для решения описанной проблемы PostgreSQL предоставляет типы JSON и JSONB. Также существуют расширения zson, pg_protobuf и другие. Из этого доклада вы узнаете, как пользоваться описанными решениями, каковы их сильные и слабые стороны, и т.д. Также вы узнаете о связанных работах, которые сейчас находятся в процессе.

  • Olivier Courtin
    Olivier Courtin DataPink Owner & DataScientist
    180 мин

    Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

    На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.