title

text

Дмитрий Юхтимовский
Дмитрий Юхтимовский Gilev.ru технический лидер
12:00 05 февраля
22 мин

Магические фокусы с последующим разоблачением (1С+PG)

Магические фокусы с последующим разоблачением (1С+PG):

  • Фокус первый. Как убедить бухгалтерию купить новый сервер.
  • Фокус второй. Как показать, что MS SQL быстрее PostgreSQL.
  • Фокус третий. Как показать, что PostgreSQL быстрее MS SQL Server.

Слайды

Видео

Другие доклады

  • Иван Муратов
    Иван Муратов ООО "Первая Мониторинговая Компания" Технический директор
    22 мин

    PostgreSQL + PostGIS + TimescaleDB - хранилище для систем мониторинга транспорта

    PostgreSQL + PostGIS + TimescaleDB - это готовый к эксплуатации симбиоз из надежной РСУБД, мощного набора географических объектов и вычислений и работа с time-series данными. Данная связка прекрасно решает проблему хранения телеметрии, при этом оставляя в ваших руках всю экосистему PostgreSQL.

  • Артем Иванов
    Артем Иванов Atos IT S&S Пресейл-инженер
    Алексей Игнатов
    Алексей Игнатов Postgres Professional DBA
    22 мин

    Миграция на СУБД PostgreSQL/Postgres Pro с многоядерными серверами Bull. Реальный опыт

    При миграции на СУБД PostgreSQL/Postgres Pro многоядерные серверы требуют к себе внимательного отношения и знания настроек для параллельной работы процессов. Как обеспечить корректную и быструю работу при многотерабайтных конфигурацях?

    В своем докладе Артем Иванов и Алексей Игнатов расскажут об опыте тестирования PostgreSQL и Postgres Pro на BullSequana S и Bullion S.

    • Особенности данной аппаратной платформы для высонагруженных конфигураций
    • Многопроцессорные Scale-up серверы и PostgreSQL/Postgres Pro
    • Результаты стрессового тестирования оборудования для СУБД PostgreSQL/Postgres Pro.

  • T
    Tatsuro Yamada NTT Comware Ведущий специалист по базам данных
    22 мин

    Настройка автопланировщика с использованием цикла обратной связи

    При OLAP и пакетной обрабокте данных часто наблюдается ситуация, что чем сложее запрос (содержит много джойнов, фильтров и аггрегативных функций), тем выше вероятность ошибок в оценке количества строк, в результате чего планировщик выбирает неэффективный план исполнения запроса.

    Для того, чтобы решить эту проблему, я разработал инструмент под названием pg_plan_advsr - это расширение для PostgreSQL, которое исправляет ошибки оценки путем неоднократного возвращения в планировщик информации, собранной в ходе исполнения запроса.

    Расширение содержит три фичи:

    1. Автоматическая оптимизация плана запроса за счет неоднократного возвращения информации о ходе выполнения запроса в планировщик.
    2. Сохранение всех выработанных при оптимизации планов запросов в таблицу истории.
    3. Создание и сохранение хинтов оптимизатора с тем, чтобы иметь возможность воспроизвести выработанные планы исполнения запросов в процессе настройки.

    Я верифицировал эффективность pg_plan_advsr путем запуска join order benchmark (JOB) на PG 10.4, в ходе чего наблюдалось сокращение времени исполнения запроса до 50% от первоначального. Таким образом, расширение будет полезно пользователям, который хотят настроить планировщик для OLAP и пакетной обработки данных.

    В ходе презентации я расскажу о следующие моментах:

    • Принципы построения и архитектура pg_plan_advsr.
    • Подробная информация о результатах тестирования JOB.
    • Направления улучшений в будущем.
    • Совместное использование расширений aqo и pg_plan_advsr together (экспериментальное).

  • Андрей Фефелов
    Андрей Фефелов Mastery.pro Технический директор
    90 мин

    Простой отказоустойчивый кластер на postgres, patroni, consul, s3, walg, ansible

    Patroni становится де-факто стандартом для построения отказоустойчивых кластеров Постгрес.

    В мастер-классе мы построим простой отказоустойчивый кластер из 3х нод на перечисленном стеке (на первый взгляд не выглядит простым).

    Мы кратко познакомимся с архитектурой patroni, обсудим наиболее интересные параметры конфигураций.

    Посмотрим как работает файловер и какими способами можно проинициализировать кластер.

    После мастер-класса вы сможете запустить такой кластер с нуля, используя предоставленные плейбуки ansible.