title

text

Александр Смолин
Александр Смолин Красноярский ИВЦ - СП ГВЦ - ОАО "РЖД" Программист 1 категории
: декабря
22 мин

Настройка и профилирование виртуальной инфраструктуры VMware для интенсивного ввода/вывода PostgreSQL

Виртуализация в компаниях стала альтернативой консервативного подхода "одна задача - один сервер", позволяющая эффективно использовать аппаратные ресурсы, централизованно управлять серверной инфраструктурой, экономить электроэнергию и ресурсы на охлаждение. В докладе рассказывается о настройке среды VMware для интенсивного ввода-вывода PostgreSQL и инструментах профилирования виртуальной инфраструктуры для контроля производительности и устранения выявленных проблем.

Слайды

Видео

Другие доклады

  • Esteban Zimányi
    Esteban Zimányi ULB Professor
    45 мин

    MobilityDB: расширение PostgreSQL для управления мобильными данными

    В ходе доклада мы представим MobilityDB - расширение PostgreSQL, которое раздвигает границы системы типов в PostgreSQL и PostGIS на абстрактные данные для адекватного представления изменяющихся данных об объектах. Эти типы данных могут представлять эволюцию во времени значений некоторого типа элементов, называемого базовым темпоральным типом. Например, темпоральный целочисленный тип данных может использоваться для демонстрации изменения во времени количества сотрудников департамента. В данном случае базовым типом данных будет целочисленный или темпоральный целочисленный. Аналогично, темпоральный тип данных с плавающей точкой может использоваться для записи изменения во времени температуры в помещении или местоположения автомобиля по GPS-координатам. Темпоральные типы данных оказываются полезны, поскольку для работы многих приложений, например, мобильных, принципиально необходимо обрабатывать изменяющиеся во времени величины.

    В расширении MobilityDB темпоральные типы данных основаны на булевых, целочисленных, с плавающей точкой и текстовых типах данных от PostgreSQL, а также на геометрических и географических типах данных от PostGIS (ограниченных размерностью 2D или 3D). MobilityDB соответствует действующим стандартам по перемещаемым объектам OGC http://www.opengeospatial.org/standards/movingfeatures, в частности, OGC Moving Features Access, в котором определены операции, применимые к изменяющимся во времени геометриям.

    Для проведения разноообрзаных операций над темпоральными типами данных доступен богатый набор функций и операторов. В общем случае они разделюятся на три типа:

    • Пожизненные функции и операторы: операторы над базовыми типами (такие как арифметические операции над целыми числами и числами с плавающей точкой, пространственные отношения и расстояния для геометрий) интуитивно обобщаются на случай изменяющихся во времени значений. Пространственно-темпоральные функции в MobilityDB обобщают пространственные функции PostGIS как для геометрических, так и для географических типов данных, к примеру для "ST_Intersection". На базовом уровне, MobilityDB принимает в расчет аспект темпоральности и делегирует обработку пространственных данных в PostGIS.
    • Темпоральные функции и операторы обрабатывают изменяющиеся во времени размерности величины, которая может представлять собой единичное значение, диапазон значений, массив значений или массив диапазонов. Примерами являются функции периодов, которые ограничивают темпоральный тип заданным массивом временных диапазонов, а также функции продолжительности, которые извлекают время определения значения величины.
    • Пространственно-темпоральные функции и операторы - в эту категорию попадают все остальные функции. Примеры: speed(tgeompoint/tgeogpoint), azimuth(tgeompoint/tgeogpoint), maxValue(tfloat/tint), взвешенное по времени среднее twAvg(tfloat) и т.д.

    Как GiST, так и SP-GiST индексы были расширены для поддержки темпоральных типов данных. Индекс GiST реализует R-дерево для темпоральных численно-буквенных типов данных, а TB-дерево - для темпоральных координат. Индекс SP-GiST реализует Quad-дерево для темпоральных численно-буквенных типов данных, а Oct-дерево - для темпоральных координат. Подход, использованный в MobilityDB при разработке SP-GIST индекса, позволил нам добавить индексы SP-GIST для двумерных, трехмерных и n-мерных геометрий в PostGIS.

    Доступны два типа числовых функций аггрегирования. В дополнение к традиционным функциям min, max, count, sum, and avg, теперь есть и их оконные версии (также известные как кумулятивные). Для заданного промежутка времени w, оконная аггрегативная функция вычисляет значение функции в момент времени t, принимая в расчет значения на интервале [t − w, t]. В противоположность стандартной аггрегации, темпоральная аггрегация может возвращать результат большего размера, чем входящие данные. По этой причине темпоральные функции аггрегирования были подвергнуты жесткой оптимизации, чтобы обеспечить их эффективную работу.

    В MobilityDB также есть предварительная реализация функций сбора статистики и селективности для темпоральных типов данных.

    С точки зрения размера, расширение состоит из 67k строк кода на C, 19k строк SQL кода и 67k строк модульных тестов SQL. В нем определены 40 типов, 2300 функций и 1350 операторов.

    В ходе доклада будет проиллюстрирована пространственно-темпоральная концепция и модель данных для темпорального типа. Кратко остановимся на основных компонентах MobilityDB: индексах, аггрегировании, функциях и операторах, а также SQL-интерфейсе. Рассказ будет дополнен примерами запросов и практических случаев использования. Также будет рассказано о текущем статусе проекта MobilityDB и планируемых разработках.

  • Алексей Лустин
    Алексей Лустин SilverBulleters, LLC CTO
    22 мин

    Анализ проблемных запросов как средство регулярного рефакторинга кода 1С

    1. Принципы поиска проблемных запросов в PostgreSQL
    2. Оценка гипотетических индексов и степени их влияния на планы запросов
    3. Наиболее часто встречающиеся ошибки у 1С-программистов
    4. Базовые методы рефакторинга кода с учетом особенностей PostgreSQL
    5. Хранение аналитической информации журнала работы PostgreSQL для оценки качества рефакторинга

  • Андрей Фефелов
    Андрей Фефелов Mastery.pro Технический директор
    90 мин

    Простой отказоустойчивый кластер на postgres, patroni, consul, s3, walg, ansible

    Patroni становится де-факто стандартом для построения отказоустойчивых кластеров Постгрес.

    В мастер-классе мы построим простой отказоустойчивый кластер из 3х нод на перечисленном стеке (на первый взгляд не выглядит простым).

    Мы кратко познакомимся с архитектурой patroni, обсудим наиболее интересные параметры конфигураций.

    Посмотрим как работает файловер и какими способами можно проинициализировать кластер.

    После мастер-класса вы сможете запустить такой кластер с нуля, используя предоставленные плейбуки ansible.

  • Андрей Бородин
    Андрей Бородин Яндекс Разработчик
    45 мин

    Резервные копии с WAL-G. Что там в 2019?

    Доклад будет состоять из 3 частей: 1. Экспресс-настройка PITR в Облако 2. Последние доработки бекапостроения в WAL-G 3. Почему это может быть нужно или вредно для вашего типа требований и нагрузки.