Высоконагруженная распределенная система управления современной АЭС
В докладе будет представлена новая платформа распределенной системы управления АЭС.
Вы узнаете, как обеспечивается управление сложнейшими объектами автоматизации в мире. В режиме жесткого реального времени обеспечивается работа более 150 специальных подсистем, управляющих различными технологическими процессами АЭС, таких как система управления реактором мощностью выше 1000 МВт и турбиной весом более 2000 тонн. Более 100К источников данных от датчиков и до 500К расчетных параметров. 5 разновидностей физических процессов: нейтронная кинетика, гидродинамика, химия и радиохимия и физика прочности.
При некоторых отклонениях вся система превращается в огромный источник DDoS полезной диагностической информации, которой всегда больше, чем способна переварить сеть и вычислительные ресурсы автоматизированной системы, что мешает нормальному управлению объектом. Вы узнаете, как мы «разруливаем» такие проблемы.
Из доклада вы узнаете об аппаратной и программной архитектуре таких систем, узнаете, как обеспечивается резервирование и репликация данных в таких системах, зачем нужна избыточность данных и технологическое разнообразие. Как обеспечивается управление нагрузками, как устроен QoS. И что будет, если отключится система нормальной эксплуатации, как, например было на Фукусиме.
Но мы все же про кодинг. Никаких SSD и HDD, только InMemory, структуры данных из десятков миллионов элементов, забудьте про кэш процессора, он не работает. Ваш новый Xeon 4-го поколения потерял все преимущества и превратился в "тыкву", поэтому закатываем рукава и ковыряемся в таймингах, жесточайшей аcинхронике и выжимаем из железа максимум. Кто слабое звено - процессор, память, ОС или сеть. Выясняем это.
Слайды
Видео
Другие доклады
-
Николай Рыжиков Health Samurai CTOММарат Сурмашев Health Samurai Программист
Эксплуатация JSONB
JSONB в PostgreSQL обладает рядом интересных свойств, которые могут пригодиться при проектировании и разработке бизнес-систем с тяжелой предметной областью, помогая бороться со сложностью и вариабельностью. На мастер-классе мы обсудим преимущества и недостатки использования JSONB. На примере открытой медицинской базы данных - fhirbase - мы с вами:
- загрузим синтетические медицинские данные в PostgreSQL
- научимся искать и индексировать эти данные (gin, jsquery, json-knife)
- посмотрим, как использовать JSON агрегацию для постороения сложных запросов (GraphQL)
- покажем, как эти данные можно модифицировать и валидировать
- поговорим об архитектурных последствиях использования JSONB
Технические требования:
- docker
- docker-compose
-
Мирослав Шедиви solute GmbH Senior Software Developer
Python и PostgreSQL с использованием psycopg2
Python, может быть, не самый быстрый язык программирования на CPU, но быстрая и простая разработка на нем экономит массу усилий того, кто находится между креслом и клавиатурой. В ходе мастер-класса мы разберем "psycopg2" - наиболее популярную библиотеку для доступа к серверу PostgreSQL, а также напишем небольшое приложение, используя некоторые его полезные свойства.
-
Мирослав Шедиви solute GmbH Senior Software Developer
Асинхронный Python и PostgreSQL с использованием asyncpg
Возможно, Python не самый быстрый язык программирования на CPU, но быстрая и простая разработка на нем экономит массу усилий того, кто находится между креслом и клавиатурой. Поскольку программные клиенты базы данных большую часть времени находятся в ожидании отклика от сервера базы данных, аснихронная функциональность Python, ставшая доступной в последних версиях (3.5+), может оказаться полезной для значительной оптимизации скорости работы приложения за счет того, что время подготовки ответа сервером может быть использовано приложением для работы над другими задачами. Асинхронный интерфейс между Python и PostgreSQL называется "asyncpg". В ходе мастер-класса я разберу работу с данной библиотекой и напишу короткое приложение, использую некоторые полезные свойства библиотеки.
-
Юрий Жуковец ЗАО Дилжитал-Дизайн Архитектор ПО
Технические особенности портирования T-SQL кода на plpgsql и данных из MS SQL в PG на примере перевода СЭДО «Приоритет» на Postgres
Доклад посвящен продолжению проекта по переводу нашей системы электронного документооборота «Приоритет» с MS SQL на Postgres. Будут затронуты технические решения и моменты переписывания с T-SQL на plpgsql, оптимизации результативного кода и переноса данных. Дополнительно рассмотрим аспекты тестирования производительности с точки зрения поиска «плохого кода» pgplsql как кандидата на оптимизацию. Основная задача презентации - ответить на вопрос: "У нас так на T-SQL - как это перенести на PG?". Доклад предназначается для начинающих разработчиков на Postgres и является продолжением предыдущего доклада сделанного на конференции в 2017 (https://youtu.be/v6_4Szr8t14).