title

text

Алексей Клюкин
Алексей Клюкин Zalando SE Database Engineer
Александр Кукушкин
Александр Кукушкин Zalando SE Database Engineer
14:00 05 февраля
180 мин

Мастер-класс: Управление высокодоступными PostgreSQL кластерами с помощью Patroni

Patroni - это Python-приложение для создания высокодоступных PostgreSQL кластеров на основе потоковой репликации. Оно используется такими компаниями как Red Hat, IBM Compose, Zalando и многими другими. С его помощью можно преобразовать систему из ведущего и ведомых узлов (primary - replica) в высокодоступный кластер с поддержкой автоматического контролируемого (switchover) и аварийного (failover) переключения. Patroni позволяет легко добавлять новые реплики в существующий кластер, поддерживает динамическое изменение конфигурации PostgreSQL одновременно на всех узлах кластера и множество других возможностей, таких как синхронная репликация, настраиваемые действия при переключении узлов, REST API, возможность запуска пользовательских команд для создания реплики вместо pg_basebackup, взаимодействие с Kubernetes и т.д.

Слушатели мастер-класса подробно узнают, как работает Patroni, получат практические навыки настройки высокодоступных кластеров на его основе, познакомятся с различными дополнительными возможностями и поучаствуют в диагностике проблем. Будут рассмотрены следующие темы:

  • область применения: какие задачи HA успешно решаются Patroni
  • обзор архитектуры
  • создание тестового кластера
  • утилита patronictl
  • изменение конфигурации PostgreSQL для кластера, управляемого Patroni
  • мониторинг с помощью API
  • подходы к переключению клиентов
  • дополнительные возможности: ручное переключение, перезагрузка по расписанию, режим паузы
  • настройка синхронной репликации
  • расширяемость и универсальность
  • частые ошибки и их диагностика

Для полного участия в мастер-классе вам понадобится ноутбук с установленным git, vagrant и virtual box.

Vagrant можно загрузить со страницы https://www.vagrantup.com или установить с помощью пакетов в вашем дистрибутиве. Virtualbox: https://www.vagrantup.com

После установки Vagrant и Virtualbox нужно выполнить:

$ git clone https://github.com/alexeyklyukin/patroni-training
$ cd patroni-training
$ vagrant up

После того, как patroni box поднимется и установит необходимые пакеты к нему можно подключиться с помощью vagrant ssh.

Видео

Другие доклады

  • Андрей Литуненко
    Андрей Литуненко 2ГИС Программист
    45 мин

    Как мы распрощались с MongoDB и перешли на PostgreSQL

    В своем докладе я поделюсь опытом переноса, конвертацией NoSQL-данных в реляционный вид и расскажу, как нам удалось ускорить приложение в 2 раза.

    Изначально для хранения данных мы использовали PosgtgreSQL и MongoDB. На практике мы выяснили, что такое разделение крайне неудобно. Мы тратили уйму времени и внимания.

    Расскажу, как с помощью mosql мы перенесли данные из MongoDB в PostgreSQL. Теперь все данные могут быть получены одним запросом, а схема таблиц обеспечивает консистентность данных.

  • Максим Соболевский
    Максим Соболевский JetBrains Менеджер по маркетингу
    45 мин

    DataGrip: IDE для PostgreSQL от JetBrains

    JetBrains 15 лет производит среды разработки для работы со многими языками программирования. Самая популярная из них – IntelliJ IDEA для java, но она поддерживает и базы данных. В какой-то момент мы решили, что эту функциональность и глубокий опыт компании в работе с языками можно привнести и в мир SQL – так появилась среда разработки DataGrip. В докладе я расскажу о том, как DataGrip помогает писать код и работать с данными быстро, как расширить самому функциональность инструмента и постараюсь выяснить, какие проблемы в инструментарии актуальны для российского PostgreSQL сообщества.

  • Christopher Travers
    Christopher Travers Adjust GmbH Database Administrator
    45 мин

    PostgreSQL на 20TB и выше

    В последние шесть месяцев я работал с массивным OLAP окружением, охватывающим порядка 400TB данных. Приходите и узнайте, как мы заставили это все работать, с какими трудностями сталкивались и какие навыки нам потребовались.

    Этот доклад будет иметь мало общего с докладом про 10TB и выше, так как среды данных значительно отличаются. Мы рассмотрим эффективность аналитики, выравнивание данных, причины для разработки расширений на С, перемещение данных между серверами в нескольких центрах обработки данных.

  • Анатолий Солдатов
    Анатолий Солдатов ЛАНИТ Старший разработчик баз данных
    22 мин

    Как деплоить в 5 раз быстрее или рассказ о нашей реализации параллельного выполнения миграций в Liquibase

    Liquibase - очень удобный инструмент последовательных миграций баз данных, используемый как на наших проектах, так и в большом числе других проектов и фреймворков. Он позволяет держать код базы вместе с кодом приложения в VSC, отслеживать попытки повторных миграций и много-много чего еще. Но рано или поздно проект вырастает, данные занимают терабайты, а liquibase все еще накатывает миграции последовательно.

    Мы не смогли позволить себе деплоиться по 100 часов и придумали тулзу (фреймворк) для liquibase, которая расширяет его возможности и позволяет выполнять паралллельно целый ряд скриптов или разбивать одну большую миграцию на маленькие партиции и параллельно мигрировать их.