title

text

Павел Борисов
Павел Борисов Postgres Professional программист
16:00 03 марта
45 мин

Ускорение быстрого текстового поиска с помощью индекса RUM

Быстрый текстовый поиск в PostgreSQL существенно ускоряется, если использовать обратные составные индексы по лексемам внутри типа tsvector. Индекс RUM - это свободное расширение, основанное на индексе GIN. Оно индексирует не только лексемы, но и их положение в текстовом поле, а также включает дополнительную информацию - вес лексемы, это позволяет полнее поддерживать возможности tsvector.

До недавних пор запросы с весами лексем в индексе RUM требовали перепроверки по таблице. Моя модификация (2020) в разы ускоряет такие запросы, делая их index-only.

В докладе будут представлены различные сценарии использования быстрого текстового поиска и применение индекса RUM для его существенного ускорения, а также бенчмарки по сравнению с встроенным в PostgreSQL индексом GIN.

Видео

Другие доклады

  • Арсений Шер
    Арсений Шер Postgres Professional Разработчик
    45 мин

    Консенсус, Postgres, Мультимастер

    Postgres Pro Multimaster - это расширение Postgres (и набор патчей для ядра), обеспечивающее высокую доступность (HA) со строгой согласованностью и масштабируемостью чтения. Он образует симметричный кластер без общего доступа, синхронно реплицирующий данные и автоматически выполняющий аварийное восстановление. В течение последнего года мы приложили значительные усилия, чтобы убедиться и доказать, что согласованность сохраняется во всех сценариях. Новая версия, которая будет выпущена как часть Postgres Pro Enterprise 13, использует алгоритм Paxos для определения результата транзакции и оригинальный протокол, управляющий процессом восстановления; мы использовали TLA+ и TLC model checker для проверки его правильности. Я расскажу, как все это работает и почему в некоторых случаях multimaster может быть привлекательной альтернативой традиционным HA решениям на основе потоковой репликации.

    Multimaster теперь имеет открытый исходный код и доступен по адресу: https://github.com/postgrespro/mmts

    Чтобы сделать доклад менее узкоспециализированным и более привлекательным для широкой аудитории, в первой части я расскажу о том, как в целом современные СУБД (в основном так называемые NewSQL СУБД) обеспечивают отказоустойчивость. В частности, я остановлюсь на следующих моментах:

    что такое строго согласованная СУБД и какие накладные расходы с этим связаны; что такое распределённый консенсус, Paxos, Raft; как они здесь помогают?

    Я не буду пытаться объяснять какие-либо алгоритмы построчно; это едва ли осмысленно с учетом ограничений по времени, и на эту тему есть много полезной литературы. Цель здесь скорее в том чтобы познакомить с областью и задать в ней ориентиры.

  • Henrietta Dombrovskaya
    Henrietta Dombrovskaya Braviant Holdings Зам.директора по СУБД
    45 мин

    NORM - фреймворк без ORM

    Хорошо известно, что, хотя производительность базы данных велика и каждый запрос выполняется за миллисекунды, общее время отклика приложения может быть медленным, поэтому пользователи могут долго ждать ответа. Мы знаем, что проблема не в базе данных, а в том, как разработчики приложений с ней общаются. В частности, речь идет об ORM - Object-Relational Mappers. Разработчики баз данных ненавидят их, но разработчики приложений любят их, потому что они позволяют разрабатывать приложения без каких-либо знаний о внутреннем устройстве СУБД. В результате производительность системы часто оказывается неприемлемо низкой.

    Единственный способ изменить это - предоставить разработчикам приложений такой же простой в использовании инструмент, как ORM, но позволяющий избежать распространенных ошибок ORM. Вот почему мы разработали NORM - No-ORM Framework. Во время этой презентации мы рассмотрим примеры кода из репозитория https://github.com/hettie-d/NORM и узнаем, как создавать «транспортные объекты» для эффективной передачи данных между приложениями и базами данных.

  • Daniel Westermann
    Daniel Westermann dbi services Principal Consultant
    45 мин

    Как переносить данные из Oracle в PostgreSQL и обратно

    Использование PostgreSQL стало обычным делом во множестве организаций. В большинстве случаев PostgreSQL устанавливают в дополнение к уже имеющимся СУБД Oracle, и довольно скоро возникает закономерный вопрос: как перебрасывать данные из Oracle в PostgreSQL и наоборот? Давайте перенесёмся в прошлое, в март 2001, когда вышло новое расширение SQL стандарта, определившее общие принципы создания API для управления внешними данными: SQL/MED (ISO/IEC 9075-9:2008). Сообщество PostgreSQL довольно быстро создало фреймворк для использования рекомендаций стандарта в виде так называемых обёрток сторонних данных (foreign data wrappers). Это случилось в 2011 с выходом PostgreSQL 9.1. С тех пор число обёрток сторонних данных постоянно растёт. Сегодня благодаря им PostgreSQL может интегрировать данные почти из любого внешнего источника, будь то обычные файлы, другие реляционные СУБД или даже неструктурированные данные. В рамках этого доклада мы рассмотрим обёртку сторонних данных для Oracle и то, как её можно использовать для получения данных из Oracle в PostgreSQL. Однако обратное тоже верно: данные из PostgreSQL также можно отправить в Oracle, и это может быть важно для соблюдения требований. Обещаю, что в докладе будет две части: слайды и много демонстраций.

  • Tatsuro Yamada
    Tatsuro Yamada NTT Comware Ведущий специалист по базам данных
    Julien Rouhaud
    Julien Rouhaud Разработчик
    22 мин

    Построение автоматического консультанта и инструментов настройки производительности в PostgreSQL

    PostgreSQL - зрелая реляционная СУБД, её история насчитывает более 30 лет. За последний год её оптимизатор запросов стал лучше, и обычно он создаёт хорошие планы выполнения запросов.

    Но всегда ли эти планы выполнения запросов хороши? Чтобы оптимизировать процесс их создания, приходится пользоваться предположениями, чтобы планы выполнения запросов создавались достаточно быстро. Некоторые из этих предположений проверить довольно легко (например, актуальность статистики), другие сложнее (например, надо убедиться, что правильные индексы были созданы), а некоторые проверить почти невозможно (например, убедиться, что выборки достаточно репрезентативны даже для ассиметричного повторного секционирования данных). Сегодня из-за всех этих предположений администратор базы данных не всегда осознаёт, что он мог бы добиться значительного улучшения производительности.

    Чтобы помочь администраторам баз данных работать с действительно хорошим планом выполнения запросов, ниже мы представим несколько инструментов, которые могли бы помочь решить вышеупомянутые проблемы. Мы расскажем о консультанте для недостающих индексов, поиске недостающей статистики для создания новых метрик, а также информации для исправления ошибок в оценке строк (при этом порядок выполняемых операций соединения и оператор соединения определяются автоматически).

    • pg_qualstats предоставляет подсказки для создания новых индексов и расширенной статистики чтобы собрать много предикатных статистических данных о производственной нагрузке.
    • pg_plan_advsr создаёт альтернативные планы выполнения запросов автоматически для анализа информации об итеративном выполнении запросов, чтобы исправить ошибку оценки строк.

    В рамках этого доклада мы объясним, как устроены эти инструменты, что можно делать с их помощью, и как эффективно использовать оба инструмента вместе. Мы также упомянем другие инструменты для решения смежных проблем. Поэтому наш доклад будет полезен администраторам баз данных, которые заинтересованы в улучшении производительности при выполнении запросов или хотят проверить адекватность существующих настроек, индексов или статистики.