Использование PostgreSQL в сервисе автоматизации контекстной рекламы Alytics для near-realtime обработки смешанной нагрузки OLTP + OLAP
В слое хранения, используя PostgreSQL с самого старта разработки, мы прошли путь от небольшого кластера на виртуалке до многохостовой системы, которая обеспечивает near real-time обработку смешанной OLTP-OLAP нагрузки. В этом докладе собираюсь рассказать про основные этапы развития нашего аналитического решения на уровне приложения и инфраструктуры, особенности эксплуатации PG, которые возникали в процессе.
ВИДЕО
Слайды
Другие доклады
-
Дмитрий Васильев Postgres Professional DBA
Mamonsu - швейцарский нож для управления и мониторинга PostgreSQL
Мастер-класс будет про то как правильно мониторить PostgreSQL. Мы рассмотрим утилиту mamonsu, я покажу как её настроить, какие есть скрытые у нее возможности и как можно их расширить.
-
Михаил Каган Mellanox Technologies Технический Директор
Построение высокопроизводительных горизонтально-масштабируемых СУБД
Современным высокопроизводительным и горизонтально-масштабируемым СУБД в ходе своей работы требуется перемещать огромные объемы данных между компонентами системы. Справляться с этой задачей они должны быстро и без задержек для пользователей. Именно на высочайшей пропускной способности, ультранизких задержках, а также разгрузке CPU от сетевых задач фокусируется компания Mellanox при разработке своих технологий интерконнекта. В своем докладе Михаил расскажет какую роль быстрая сетевая инфраструктура играет в системах СУБД и Big Data, а также поделится опытом компании Mellanox по построению таких систем совместного с ведущими мировыми производителями.
ВИДЕО
-
Вадим Яценко ООО Прогресс Софт Начальник Отдела разработки систем хранения данных
Очень большие таблицы в PostgreSQL. Или как превратить 60+ Tb в 10+ Tb
В докладе будет рассказано о том, как мы реализовали хранение таблиц с большим количеством строк (1 млрд + строк в сутки). Проект существует в production 2 год. Это крупный транспортный проект всероссийского масштаба.
Суммарный объем данных 300 Tb на 25 серверах PostgreSQL * 2 Data Center. Будет рассказано об ошибках организации хранения больших таблиц на начальном этапе проекта, и о том как эти ошибки были устранены. Так же расскажу о том, как организована ротация данных и архивирование. Затрону вопросы о том, чего нам не хватало в PostgreSQL 9.4 из того, что появилось в 9.5 и в 9.6. А так же, какие новые возможности, нам хотелось бы увидеть в новых релизах PostgreSQL.
-
Marco Slot Citus Data Главный инженер-программист
Ускоряясь до миллиона записей в секунду: масштабирование PostgreSQL с помощью Citus MX
Инструмент Citus позволяет распределять таблицы PostgreSQL между несколькими серверами. Расширяя возможности PostgreSQL в плане делегирования и распараллеливания задач между группой рабочих узлов, Citus позволяет горизонтально масштабировать CPU-ресурсы и память для выполнения запросов.
Год назад мы ступили на долгий путь реализации в Citus возможности горизонтального масштабирования в новом измерении - для повышения скорости записи. Так как все запросы на запись обрабатывались через один узел PostgreSQL, скорость записи в Citus ограничивалась CPU-ресурсами одного узла. Citus MX - это новая версия Citus, которая предоставляет доступ к распределенным таблицам с любого узла, обеспечивая повышение скорости записи до уровня NoSQL решений.