title

text

Olivier Courtin
Olivier Courtin DataPink Owner & DataScientist
12:15 06 февраля
45 мин

Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.

Слайды

Видео

Другие доклады

  • Дмитрий Сарафанников
    Дмитрий Сарафанников Яндекс Разработчик
    45 мин

    Как сохранить статистику при мажорном обновлении, и что за это бывает

    Ни для кого не секрет, что статистика не переносится при мажорном обновлении. Для небольших и не сильно нагруженных баз это не проблема, можно быстро собрать новую статистику. Но у нас есть базы объемом порядка 5ТБ и нагрузкой порядка 100k rps, для которых это стало большой проблемой: взлетая без статистики, реплики даже не могли накатывать WAL. В своем докладе расскажу, на какие хитрости мы пошли, чтобы произвести обновление этих баз в условиях требований 100% доступности read only, о том, какие ошибки допустили, и о том как эти ошибки мучительно исправляли. Результатом этих ошибок стало расширение pg_dirty_hands, в котором мы будем собирать различные хаки, которые можно назвать «фол последней надежды».

  • Кирилл Боровиков
    Кирилл Боровиков ООО "Компания "Тензор" Технический директор
    45 мин

    explain.sbis.ru - массовая оптимизация запросов

    Как оптимизировать производительность запросов в PostgreSQL? Как это делать, если серверов - сотни, а баз - тысячи? В "Тензоре" мы разработали для этого отдельный инструмент - explain.sbis.ru: - для синхронного сбора и анализа запросов - для визуализации планов выполнения - для мониторинга ошибок в БД

  • Николай Рыжиков
    Николай Рыжиков Health Samurai CTO
    45 мин

    Использование PostgreSQL и Сlojure для разработки приложений, ориентированных на работу с базами данных

    Если честно взглянуть на большинство наших бизнес-приложений, то они через провод собирают данные в базу и раздают их в обратном направлении. Что, если не пытаться воздвигать стену абстракций между приложением и базой данных (ORM), а постараться использовать их симбиоз - сильные стороны и индивидуальные особенности.

    Я расскажу как мы используем postgresql и clojure для создания data intensive приложений для медицины.

    • functional relational programming
    • jsonb для моделирования сложной предметной области
    • функциональные индексы и расширение json-knife для поиска в jsonb
    • реализация graphql на postgres
    • logical replication для построения реактивных интеграций
    • асинхронный JDBC-free коннектор к postgresql на netty

  • Михаил Балаян
    Михаил Балаян Acronis Chief Database Architect
    45 мин

    MVCC в картинках и когда длинные транзакции - это проблема

    Многие из нас знают о том, что именно MVCC обеспечивает многопользовательский доступ к данным во многих реляционных базах данных, которые гарантируют согласованность и изолированность транзакций. Но именно глубокое понимание реализации этого механизма в PostgreSQL позволяет нам лучше понимать процессы, происходящие в базе, проектировать логику работы приложений и структуры таблицы, чтобы быть наиболее эффективными в мире высоких нагрузок. На примере одного из процессов в нашем продукте мы разберемся в том, как реализована MVCC в PostgreSQL и раскопаем одну из особенностей, когда казалось бы, несвязанные активности могут влиять друг на друга.