Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python
PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
Слайды
Видео
Другие доклады
-
Дмитрий Сарафанников Яндекс Разработчик
Как сохранить статистику при мажорном обновлении, и что за это бывает
Ни для кого не секрет, что статистика не переносится при мажорном обновлении. Для небольших и не сильно нагруженных баз это не проблема, можно быстро собрать новую статистику. Но у нас есть базы объемом порядка 5ТБ и нагрузкой порядка 100k rps, для которых это стало большой проблемой: взлетая без статистики, реплики даже не могли накатывать WAL. В своем докладе расскажу, на какие хитрости мы пошли, чтобы произвести обновление этих баз в условиях требований 100% доступности read only, о том, какие ошибки допустили, и о том как эти ошибки мучительно исправляли. Результатом этих ошибок стало расширение pg_dirty_hands, в котором мы будем собирать различные хаки, которые можно назвать «фол последней надежды».
-
Кирилл Боровиков ООО "Компания "Тензор" Технический директор
explain.sbis.ru - массовая оптимизация запросов
Как оптимизировать производительность запросов в PostgreSQL? Как это делать, если серверов - сотни, а баз - тысячи? В "Тензоре" мы разработали для этого отдельный инструмент - explain.sbis.ru: - для синхронного сбора и анализа запросов - для визуализации планов выполнения - для мониторинга ошибок в БД
-
Николай Рыжиков Health Samurai CTO
Использование PostgreSQL и Сlojure для разработки приложений, ориентированных на работу с базами данных
Если честно взглянуть на большинство наших бизнес-приложений, то они через провод собирают данные в базу и раздают их в обратном направлении. Что, если не пытаться воздвигать стену абстракций между приложением и базой данных (ORM), а постараться использовать их симбиоз - сильные стороны и индивидуальные особенности.
Я расскажу как мы используем postgresql и clojure для создания data intensive приложений для медицины.
- functional relational programming
- jsonb для моделирования сложной предметной области
- функциональные индексы и расширение json-knife для поиска в jsonb
- реализация graphql на postgres
- logical replication для построения реактивных интеграций
- асинхронный JDBC-free коннектор к postgresql на netty
-
Михаил Балаян Acronis Chief Database Architect
MVCC в картинках и когда длинные транзакции - это проблема
Многие из нас знают о том, что именно MVCC обеспечивает многопользовательский доступ к данным во многих реляционных базах данных, которые гарантируют согласованность и изолированность транзакций. Но именно глубокое понимание реализации этого механизма в PostgreSQL позволяет нам лучше понимать процессы, происходящие в базе, проектировать логику работы приложений и структуры таблицы, чтобы быть наиболее эффективными в мире высоких нагрузок. На примере одного из процессов в нашем продукте мы разберемся в том, как реализована MVCC в PostgreSQL и раскопаем одну из особенностей, когда казалось бы, несвязанные активности могут влиять друг на друга.