title

text

Henrietta Dombrovskaya
Henrietta Dombrovskaya Braviant Holdings Зам.директора по СУБД
17:00 02 марта
45 мин

NORM - фреймворк без ORM

Хорошо известно, что, хотя производительность базы данных велика и каждый запрос выполняется за миллисекунды, общее время отклика приложения может быть медленным, поэтому пользователи могут долго ждать ответа. Мы знаем, что проблема не в базе данных, а в том, как разработчики приложений с ней общаются. В частности, речь идет об ORM - Object-Relational Mappers. Разработчики баз данных ненавидят их, но разработчики приложений любят их, потому что они позволяют разрабатывать приложения без каких-либо знаний о внутреннем устройстве СУБД. В результате производительность системы часто оказывается неприемлемо низкой.

Единственный способ изменить это - предоставить разработчикам приложений такой же простой в использовании инструмент, как ORM, но позволяющий избежать распространенных ошибок ORM. Вот почему мы разработали NORM - No-ORM Framework. Во время этой презентации мы рассмотрим примеры кода из репозитория https://github.com/hettie-d/NORM и узнаем, как создавать «транспортные объекты» для эффективной передачи данных между приложениями и базами данных.

Видео

Другие доклады

  • Анастасия Лубенникова
    Анастасия Лубенникова Postgres Professional Разработчик
    45 мин

    Встроенное секционирование в PostgreSQL

    В этом докладе мы сравним встроенное декларативное секционирование PostgreSQL со сторонними расширениями pg_pathman и pg_partman, чтобы понять каких возможностей пока не хватает в ядре. Кроме того, я расскажу, над какими фичами в этой области сейчас активно работает сообщество и чего можно ожидать в релизе PostgreSQL14.

  • Николай Самохвалов
    Николай Самохвалов Nombox LLC Основатель
    45 мин

    Автоматическое тестирование изменений БД (DDL, DML)

    В высоконагруженном проекте любое изменение несёт в себе заметные риски сбоя или деградации производительности. Мы видим, как растёт сложность систем, количество серверов БД, релизов в неделю, автоматизация всего и вся в CI/CD pipelines, контейнерах, Kubernetes.

    Но вот когда речь заходит о тестировании изменений в БД — от банального добавления индекса до сложных, почти «хирургических» операций вроде замены в первичного ключа int4 на int8 в многотерабайтной таблице под нагрузкой — тут налицо отставание технологий и методологий. В лучшем случае изменения проверяются визуально, и тут уж всё зависит от опыта и усталости проверяющего.

    В докладе мы расскажем как мы (Postgres.ai) закрываем этот вопрос с помощью нашего решения Database Lab:

    • моментальная выдача независимых тонких клонов для многотерабайтных БД, готовых к проверкам,
    • интеграция в существующие CI/CD-инструменты и рабочий процесс,
    • сбор метрик, наиболее важных для принятия решения об одобрении/отклонении изменения (и даже автоматическое отклонения совсем опасных действий).

  • Yugo Nagata
    Yugo Nagata SRA OSS, Inc. Japan Chief Scientist
    45 мин

    Автоматическое инкрементальное обновление материализованных представлений

    Материализованное представление служит для хранения результатов запросов определения представления в БД, чтобы добиться более быстрого ответа на запрос. Однако данные в представлении устаревают после изменения базовых таблиц. Следовательно, для поддержания актуальности содержимого необходимо обновлять представление. В PostgreSQL есть команда REFRESH MATERIALIZED VIEW для обновления материализованного представления, но эта команда вычисляет его содержимое с нуля, что неэффективно в случаях, когда изменяется только небольшая часть базовой таблицы.

    Инкрементальное обновление представлений (IVM) - это метод эффективного обновления материализованных представлений, который вычисляет и применяет к материализованным представлениям только инкрементальные изменения вместо повторного вычисления. Эта функциональность требуется для быстрого обновления материализованных представлений, но еще не реализована в PostgreSQL.

    Поэтому мы разработали IVM для PostgreSQL и предлагаем реализовать его в качестве основной функции. Патч сейчас обсуждается в списке рассылки hackers. Наша реализация делает возможным автоматическое инкрементальное обновление материализованных представлений при изменении базовой таблицы. Вам не нужно писать собственную триггерную процедуру для обновления представлений. После продолжительной работы нашей команды текущая реализация IVM поддерживает некоторые возможности аггрегации, подзапросы, соединение одной таблицы (self-join), внешние соединения (outer join) и CTE (предложения WITH) в запросе определения представления. Результат оценки производительности с использованием запросов TPC-H показывает, что наша реализация IVM может обновлять материализованное представление в 200+ раз быстрее, чем повторное вычисление с помощью команды REFRESH.

    В данном докладе мы опишем нашу реализацию IVM и ее возможности.

  • Олег Бартунов
    Олег Бартунов Postgres Professional генеральный директор
    Никита Глухов
    Никита Глухов Postgres Professional Разработчик
    45 мин

    JSONB изнутри

    JSONB - популярнейший тип данных в постгресе, но нам часто говорят, что его производительность нуждается в улучшении. Часто в одном поле типа JSONB одновременно находятся и короткие, и большие значения, например блоб и его метаданные. Сейчас это весьма неэффективно. Но мы придумали несколько подходов, дающих, как показывают эксперименты, весьма сильное ускорение.