title

text

Андрей Зубков
Андрей Зубков Postgres Professional Руководитель группы систем мониторинга
12:35 02 марта
45 мин

Анализатор исторической нагрузки pg_profile/pgpro_pwr и его новые возможности

Речь пойдет о простом инструменте стратегического анализа исторической нагрузки. Расширение предназначено для поиска проблем производительности в базах данных Postgres. Расскажу о принципах работы расширения, его применимости, возможностях и развитии. У pg_profile появилась расширенная ветка pgpro_pwr, предназначенная для работы в дистрибутивах PostgresPro с расширенным набором статистик производительности. Покажу на простых примерах преимущества, доступные в базах PostgresPro Enterprise Edition и PostgresPro Standard Edition.

Слайды

Видео

Другие доклады

  • Pavel Stehule
    Pavel Stehule freelancer Независимый консультант и разработчик
    22 мин

    Как использовать pspg

    pspg - это unix-совместимый инструмент для постраничного просмотра данных, разработанный специально для Postgres-клиента psql. На сегодняшний день его возможности не ограничиваются обычным просмотром данных. Он может работать в режиме приложения или инструмента для открытия CSV и TSV файлов. В рамках доклада я постараюсь продемонстрировать основные возможности данного приложения.

  • Julien Rouhaud
    Julien Rouhaud Разработчик
    22 мин

    Как перестать бояться обновлений glibc

    PostgreSQL использует системные библиотеки правил сортировки, например, glibc или ICU, для расположения текста в определённом порядке. Общеизвестно, что необходимо принять меры предосторожности на случай, если библиотека изменит порядок сортировки для какого-либо правила. Любой индекс, который использовал старый порядок, вероятно, будет повреждён после установки новой версии библиотеки.

    В данном докладе мы рассмотрим улучшения, которые войдут в PostgreSQL 14 и помогут отслеживать версии правил сортировки, обнаруживать и устранять возможные повреждения индексов, вызванные обновлением библиотек. Мы также обсудим работу, которая выполняется сейчас в целях дальнейшего улучшения этого процесса.

  • Daniel Westermann
    Daniel Westermann dbi services Principal Consultant
    45 мин

    Как переносить данные из Oracle в PostgreSQL и обратно

    Использование PostgreSQL стало обычным делом во множестве организаций. В большинстве случаев PostgreSQL устанавливают в дополнение к уже имеющимся СУБД Oracle, и довольно скоро возникает закономерный вопрос: как перебрасывать данные из Oracle в PostgreSQL и наоборот? Давайте перенесёмся в прошлое, в март 2001, когда вышло новое расширение SQL стандарта, определившее общие принципы создания API для управления внешними данными: SQL/MED (ISO/IEC 9075-9:2008). Сообщество PostgreSQL довольно быстро создало фреймворк для использования рекомендаций стандарта в виде так называемых обёрток сторонних данных (foreign data wrappers). Это случилось в 2011 с выходом PostgreSQL 9.1. С тех пор число обёрток сторонних данных постоянно растёт. Сегодня благодаря им PostgreSQL может интегрировать данные почти из любого внешнего источника, будь то обычные файлы, другие реляционные СУБД или даже неструктурированные данные. В рамках этого доклада мы рассмотрим обёртку сторонних данных для Oracle и то, как её можно использовать для получения данных из Oracle в PostgreSQL. Однако обратное тоже верно: данные из PostgreSQL также можно отправить в Oracle, и это может быть важно для соблюдения требований. Обещаю, что в докладе будет две части: слайды и много демонстраций.

  • Daniele Varrazzo
    Daniele Varrazzo Codice Lieve Директор
    90 мин

    Python для PostgreSQL: как его использовать и преуспеть в этом?

    В рамках данного мастер-класса мы посмотрим, как обеспечить бесперебойную связь между Python и PostgreSQL. На практических примерах мы разберём, как подключиться к серверу, обеспечить обмен данными, управлять уведомлениями и транзакциями, передавая параметры безопасно и в понятной форме.

    Мы рассмотрим psycopg2, наиболее часто используемую библиотеку-адаптер PostgreSQL для Python, а также анонсируем предстоящий релиз psycopg3: что останется прежним, что изменится, как лучше реализовать программу на Python, чтобы использовать PostgreSQL по максимуму.