1С:Предприятие + Постгрес = ...
В диалоге технического директора Postgres Professional, ведущего разработчика PostgreSQL Федор Сигаев и известного 1С-эксперта Антон Дорошкевич обсудят имеющиеся проблемы эксплуатации 1С на Постгресе и их возможные решения.
Видео
Другие доклады
-
Андрей Бородин Яндекс РазработчикЕвгений Дюков Yandex Старший разработчик
Эксплуатация высокодоступных РСУБД с открытым исходным кодом в облачном окружении
Системы высокой доступности стали крайне популярны в последние несколько лет: они играют решающую роль в построении надёжных систем из доступного аппаратного обеспечения. В докладе мы обратим внимание на некоторые тонкие моменты проектирования и эксплуатации таких систем. Кроме того, будут затронуты проблемы захвата изменений с кластера высокой доступности.
-
Александр Любушкин ООО "ФОРС Телеком" Технический директорЮлия Голубева ООО "ФОРС Телеком" Ведущий эксперт
Новое развитие LUI (Live Universal Interface) - LUI4ORA2PG, инструмент миграции
В докладе будет рассказано о новом инструменте миграции прикладных систем из среды Oracle в среду Postgres. Инструмент разработан на основе средства ora2pg (Gill Darold) и отечественного средства разработки приложений LUI. О LUI делались доклады на конференциях в 2019-м и 2020-м годах:
-
Yugo Nagata SRA OSS, Inc. Japan Chief Scientist
Автоматическое инкрементальное обновление материализованных представлений
Материализованное представление служит для хранения результатов запросов определения представления в БД, чтобы добиться более быстрого ответа на запрос. Однако данные в представлении устаревают после изменения базовых таблиц. Следовательно, для поддержания актуальности содержимого необходимо обновлять представление. В PostgreSQL есть команда REFRESH MATERIALIZED VIEW для обновления материализованного представления, но эта команда вычисляет его содержимое с нуля, что неэффективно в случаях, когда изменяется только небольшая часть базовой таблицы.
Инкрементальное обновление представлений (IVM) - это метод эффективного обновления материализованных представлений, который вычисляет и применяет к материализованным представлениям только инкрементальные изменения вместо повторного вычисления. Эта функциональность требуется для быстрого обновления материализованных представлений, но еще не реализована в PostgreSQL.
Поэтому мы разработали IVM для PostgreSQL и предлагаем реализовать его в качестве основной функции. Патч сейчас обсуждается в списке рассылки hackers. Наша реализация делает возможным автоматическое инкрементальное обновление материализованных представлений при изменении базовой таблицы. Вам не нужно писать собственную триггерную процедуру для обновления представлений. После продолжительной работы нашей команды текущая реализация IVM поддерживает некоторые возможности аггрегации, подзапросы, соединение одной таблицы (self-join), внешние соединения (outer join) и CTE (предложения WITH) в запросе определения представления. Результат оценки производительности с использованием запросов TPC-H показывает, что наша реализация IVM может обновлять материализованное представление в 200+ раз быстрее, чем повторное вычисление с помощью команды REFRESH.
В данном докладе мы опишем нашу реализацию IVM и ее возможности.
-
Tatsuro Yamada NTT Comware Ведущий специалист по базам данныхJulien Rouhaud Разработчик
Построение автоматического консультанта и инструментов настройки производительности в PostgreSQL
PostgreSQL - зрелая реляционная СУБД, её история насчитывает более 30 лет. За последний год её оптимизатор запросов стал лучше, и обычно он создаёт хорошие планы выполнения запросов.
Но всегда ли эти планы выполнения запросов хороши? Чтобы оптимизировать процесс их создания, приходится пользоваться предположениями, чтобы планы выполнения запросов создавались достаточно быстро. Некоторые из этих предположений проверить довольно легко (например, актуальность статистики), другие сложнее (например, надо убедиться, что правильные индексы были созданы), а некоторые проверить почти невозможно (например, убедиться, что выборки достаточно репрезентативны даже для ассиметричного повторного секционирования данных). Сегодня из-за всех этих предположений администратор базы данных не всегда осознаёт, что он мог бы добиться значительного улучшения производительности.
Чтобы помочь администраторам баз данных работать с действительно хорошим планом выполнения запросов, ниже мы представим несколько инструментов, которые могли бы помочь решить вышеупомянутые проблемы. Мы расскажем о консультанте для недостающих индексов, поиске недостающей статистики для создания новых метрик, а также информации для исправления ошибок в оценке строк (при этом порядок выполняемых операций соединения и оператор соединения определяются автоматически).
- pg_qualstats предоставляет подсказки для создания новых индексов и расширенной статистики чтобы собрать много предикатных статистических данных о производственной нагрузке.
- pg_plan_advsr создаёт альтернативные планы выполнения запросов автоматически для анализа информации об итеративном выполнении запросов, чтобы исправить ошибку оценки строк.
В рамках этого доклада мы объясним, как устроены эти инструменты, что можно делать с их помощью, и как эффективно использовать оба инструмента вместе. Мы также упомянем другие инструменты для решения смежных проблем. Поэтому наш доклад будет полезен администраторам баз данных, которые заинтересованы в улучшении производительности при выполнении запросов или хотят проверить адекватность существующих настроек, индексов или статистики.