Построение автоматического консультанта и инструментов настройки производительности в PostgreSQL
PostgreSQL - зрелая реляционная СУБД, её история насчитывает более 30 лет. За последний год её оптимизатор запросов стал лучше, и обычно он создаёт хорошие планы выполнения запросов.
Но всегда ли эти планы выполнения запросов хороши? Чтобы оптимизировать процесс их создания, приходится пользоваться предположениями, чтобы планы выполнения запросов создавались достаточно быстро. Некоторые из этих предположений проверить довольно легко (например, актуальность статистики), другие сложнее (например, надо убедиться, что правильные индексы были созданы), а некоторые проверить почти невозможно (например, убедиться, что выборки достаточно репрезентативны даже для ассиметричного повторного секционирования данных). Сегодня из-за всех этих предположений администратор базы данных не всегда осознаёт, что он мог бы добиться значительного улучшения производительности.
Чтобы помочь администраторам баз данных работать с действительно хорошим планом выполнения запросов, ниже мы представим несколько инструментов, которые могли бы помочь решить вышеупомянутые проблемы. Мы расскажем о консультанте для недостающих индексов, поиске недостающей статистики для создания новых метрик, а также информации для исправления ошибок в оценке строк (при этом порядок выполняемых операций соединения и оператор соединения определяются автоматически).
- pg_qualstats предоставляет подсказки для создания новых индексов и расширенной статистики чтобы собрать много предикатных статистических данных о производственной нагрузке.
- pg_plan_advsr создаёт альтернативные планы выполнения запросов автоматически для анализа информации об итеративном выполнении запросов, чтобы исправить ошибку оценки строк.
В рамках этого доклада мы объясним, как устроены эти инструменты, что можно делать с их помощью, и как эффективно использовать оба инструмента вместе. Мы также упомянем другие инструменты для решения смежных проблем. Поэтому наш доклад будет полезен администраторам баз данных, которые заинтересованы в улучшении производительности при выполнении запросов или хотят проверить адекватность существующих настроек, индексов или статистики.
Слайды
Видео
Другие доклады
-
Андрей Лепихов Postgres Professional Программист
Постгрессовый планнер с памятью
Постгрес умеет строить оптимальные планы запросов для большинства практических случаев. Однако иногда, по объективным причинам, для сложных запросов или из-за ошибок в самом планнере, он может ошибаться и выдавать неоптимальный план. Из-за этого, время выполнения такого запроса может возрастать в десятки раз. Если запрос выполняется часто, то из раза в раз этот запрос выполняется дольше, чем мог бы, и СУБД в целом выдает меньший TPS. Если планнер сможет фиксировать свои ошибки и учитывать их при последующем планировании того же запроса, то это позволит улучшать характеристики СУБД в процессе её эксплуатациии. Мы представляем результаты разработки расширения для СУБД PostgreSQL, которое хранит историю выполнения запросов и реализует рекомендательный механизм для планнера. Показываем, как знание о ранее выполнявшихся запросах позволяет улучшить выполнение последующих.
-
Арсений Шер Postgres Professional Разработчик
Консенсус, Postgres, Мультимастер
Postgres Pro Multimaster - это расширение Postgres (и набор патчей для ядра), обеспечивающее высокую доступность (HA) со строгой согласованностью и масштабируемостью чтения. Он образует симметричный кластер без общего доступа, синхронно реплицирующий данные и автоматически выполняющий аварийное восстановление. В течение последнего года мы приложили значительные усилия, чтобы убедиться и доказать, что согласованность сохраняется во всех сценариях. Новая версия, которая будет выпущена как часть Postgres Pro Enterprise 13, использует алгоритм Paxos для определения результата транзакции и оригинальный протокол, управляющий процессом восстановления; мы использовали TLA+ и TLC model checker для проверки его правильности. Я расскажу, как все это работает и почему в некоторых случаях multimaster может быть привлекательной альтернативой традиционным HA решениям на основе потоковой репликации.
Multimaster теперь имеет открытый исходный код и доступен по адресу: https://github.com/postgrespro/mmts
Чтобы сделать доклад менее узкоспециализированным и более привлекательным для широкой аудитории, в первой части я расскажу о том, как в целом современные СУБД (в основном так называемые NewSQL СУБД) обеспечивают отказоустойчивость. В частности, я остановлюсь на следующих моментах:
что такое строго согласованная СУБД и какие накладные расходы с этим связаны; что такое распределённый консенсус, Paxos, Raft; как они здесь помогают?
Я не буду пытаться объяснять какие-либо алгоритмы построчно; это едва ли осмысленно с учетом ограничений по времени, и на эту тему есть много полезной литературы. Цель здесь скорее в том чтобы познакомить с областью и задать в ней ориентиры.
-
Николай Самохвалов Nombox LLC Основатель
Бесшовная оптимизация запросов PostgreSQL, версия 2.0
Существует два способа анализировать SQL-запросы:
На макроуровне: в этом случае мы анализируем рабочую нагрузку как единое целое (есть три основных подхода: использование метрик из pg_stat_statements или аналогичного модуля, анализ логов с помощью pgBadger или другого похожего решения и запрос выборки в представлении pg_stat_activity).
На микроуровне: в этом случае мы погружаемся в детали исполнения одного конкретного запроса (тут главную роль играет команда EXPLAIN).
Между этими двумя подходами есть немало "белых пятен", которые обнаруживаются с ростом нагрузки. Главные проблемы:
- Нужно переключаться между макро- и микроуровнем без больших накладных расходов.
- Требуется надёжная проверка гипотез относительно возможных оптимизаций.
- Есть необходимость минимизации рисков при развёртывании новой функциональности.
Чтобы справляться с этими задачами в растущем проекте, требуется продвинутый опыт в качестве администратора баз данных, и – иногда – интуиция. Также могут помочь новые инструменты, которые (к счастью для нас!) не так давно начали появляться.
В рамках данного мастер-класса мы разберёмся, как можно настроить процесс беспроблемной и бесшовной оптимизации SQL-запросов в вашей организации: а) какие инструменты следует выбрать в вашем конкретном случае? б) как эффективно заполнить вышеупомянутые пробелы в сфере анализа запросов?
-
Александр Никитин ЗАО ЦФТ Администратор баз данных
Неочевидные моменты процесса копирования и переноса баз данных и кластеров PostgreSQL
Копирование и перенос баз данных и кластеров PostgreSQL, казалось бы, что может быть проще?
Однако, практика показывает, что даже в таких простых действиях можно запутаться. Во время доклада я покажу какие подводные камни могут подстерегать вас в процессе копирования/переноса баз данных и кластеров PostgreSQL. Попробуем ускорить эти операции, посмотрим, с какими неожиданными проблемами вы можете столкнуться при выполнении этих, казалось бы, простых действий.