title

text

Ronan Dunklau
Ronan Dunklau Dalibo DBA
: декабря
45 мин

Multicorn: разработка Foreign Data Wrapper'ов на языке Python

Multicorn - это обобщенный Foreign Data Wrapper (FDW, интерфейс для подключения внешних источников данных, устоявшегося русского названия пока нет), предоставляющий возможность разработки конкретных FDW на языке Python, что упрощает их разработку.

Мы узнаем:

  • Что такое FDW, как работает Multicorn, и какие готовые FDW поставляются вместе с ним.
  • Как написать свой FDW на python, включая новый интерфейс IMPORT FOREIGN SCHEMA, появившийся в версии 9.5.
  • Внутренности Multicorn: что он делает и что не делает внутри.

После общего рассмотрения FDW и Multicorn, мы детальнее рассмотрим некоторые FDW, поставляемые с ним.

Затем проведем полный тур по API Multicorn, чтобы научить вас создавать FDW на Python, включая следующие детали:

  • испольование определений таблиц
  • пробрасывание WHERE
  • ограничения колонок
  • как влиять на планировщик
  • как писать во внешнюю таблицу
  • как работать с импортом внешней схемы
  • пробрасывание ORDER BY
  • управление транзакциями

Все это будет объяснено наглядно, с примерами кода, позволяющими слушателям с нуля создать свой FDW на Python.

Слайды

Видео

Другие доклады

  • Магнус  Хагандер
    Магнус Хагандер PostgreSQL Global Development Group Разработчик и коммиттер

    О структуре и эволюции сообщества PostgreSQL

    В отличие от большинства других баз данных, PostgreSQL разрабатывается сообществом, не компанией и даже не фондом. Те, кто участвуют в этом сообществе уже долгое время, обычно считают это преимуществом, но для людей со стороны, привыкших иметь дело с традиционными организациями, это часто бывает непонятно. Для тех, кто ещё не внутри, вместе с нами, в этом докладе будет рассказано, как работает сообщество PostgreSQL, как взаимодействуют различные группы, а также, как всё это изменилось за последние годы.

  • Heikki Linnakangas
    Heikki Linnakangas Pivotal PostgreSQL hacker

    Внутреннее устройство индексов

    PostgreSQL поддерживает несколько типов индексов: GiST, SP-GiST, GIN и, конечно, обычное B-дерево. Администраторы БД знают, когда применять каждый из них: GIN для полнотекстового поиска, GiST для геометрических данных и т. д., но как они устроены внутри? Благодаря чему они хорошо работают в сценариях использования, для которых предназначены? В этой презентации я познакомлю вас с внутренней структурой каждого из этих типов индексов и расскажу, каковы их сильные и слабые стороны.

  • Peter  van Hardenberg
    Peter van Hardenberg Heroku Главный исследователь
    45 мин

    Мега-масштабирование PostgreSQL: Советы от работающих с 10^6 баз данных

    Heroku Postgres is a cloud database service and the largest provider of PostgreSQL as a service anywhere. We operate more than 1,000,000 PostgreSQL databases with a team of about 10 people. We may be the most efficient DBAs in history, with approximately 100,000 databases per person on our team! This talk will introduce the opportunity and challenges of building and operating a cloud database service, as well as discussing the strategies we use to build, operate, and scale this product and team for the last six years now. We will include details about

    • a brief introduction to the service to provide context
    • strategies to design and build such a data service
    • operational war stories like how to recover from losing thousands of servers at once,
    • common challenges users have with Postgres
    • and a basic overview of the technical architecture

    This is a complementary talk to Will Leinweber's talk, which will go into much more depth on the architecture of the software we have written.

  • Kevin  Grittner
    Kevin Grittner EnterpriseDB

    Всё об изоляции транзакций в PostgreSQL для разработчиков приложений

    Когда множество пользователей, процессов или потоков выполнения одновременно модифицируют их общие данные, это может вызывать проблемы, если каким-то образом не урегулировать условия гонки. Эти проблемы особенно остро проявляются в базах данных, реализующих семантику ACID. Набор изменений, объединённых в транзакцию базы данных, должен проявляться атомарно, и для параллельных транзакций, и для процесса восстановления после сбоя. Каждая транзакция должна переводить базу данных из одного согласованного состояния (с точки зрения бизнес-правил) в другое. Для эффективной разработки необходимо иметь возможность запрограммировать каждую транзакцию независимо от других транзакций, которые по стечению обстоятельств могут выполняться в то же самое время. В случае сбоя все изменения, внесённые транзакциями, об успешном завершении которых были уведомлены приложения, а также все изменения, ставшие видимыми для других транзакций, должны оставаться в базе после восстановления. За многие годы были выработаны различные стратегии обеспечения этих гарантий, а иногда гарантии корректировались тем или иным способом. В данном докладе будет рассказано, каким образом обеспечиваются эти гарантии или их компромиссные варианты, с упором на методику сериализуемой изоляции снимков (SSI, Serializable Snapshot Isolation), применяемую в PostgreSQL (и ни в какой другой производственной СУБД на данный момент). Хотя SSI уже работает быстрее и с большей степенью параллельности, чем любая другая методика управления условиями гонки с наиболее типичной нагрузкой, есть много путей для дальнейшего увеличения производительности, некоторые из которых требуют помощи эксперта по различным методам доступа индексов; эти вопросы и будут обсуждены в данном докладе. Кроме того, на докладе будут представлены некоторые общие идеи о том, как можно использовать методики SSI с XTM в распределённой системе. В конце мы оставили время для группового обсуждения оптимизации и возможных применений в распределённой среде.