title

text

Александр Чистяков
Александр Чистяков ООО "Жить в небе" Главный инженер
15:30 05 февраля
22 мин

Слон из нержавеющей стали: продолжаем тестирование производительности PostgreSQL

Замечательная компания servers.com предоставила нам один из своих серверов для тестов, что позволило нам протестировать производительность PostgreSQL на реальном железе под разными операционными системами, включая SmartOS, DragonFly и Windows. Полученные результаты мы хотим представить сообществу.

слайды

Видео

Другие доклады

  • Guangzhou  Zhang
    Guangzhou Zhang AliBaba

    Алибаба и PostgreSQL

    Наш облачный сервис по использованию реляционных баз данных предоставляет доступ к Постгресу (aliyun.com, в настоящий момент крупнейшее частное облако в Китае). Мы также используем Постгрес для наших внутренних приложений и готовы поделиться своим опытом.

  • Камиль Исламов
    Камиль Исламов Троник Разработчик СУБД
    22 мин

    Оптимизация обработки данных аналитических отчётов

    Приводится методика, с помощью которой можно автоматизировать обновление результатов предварительной обработки аналитических данных. Предварительная обработка и кэширование отчётов позволяет моментально получать результаты отчётов по большим объёмам данных. В докладе описывается способ обновления кэшированных отчётов с минимальной нагрузкой на сервер и с управляемой степенью актуальности.

  • Heikki Linnakangas
    Heikki Linnakangas Pivotal PostgreSQL hacker

    Внутреннее устройство индексов

    PostgreSQL поддерживает несколько типов индексов: GiST, SP-GiST, GIN и, конечно, обычное B-дерево. Администраторы БД знают, когда применять каждый из них: GIN для полнотекстового поиска, GiST для геометрических данных и т. д., но как они устроены внутри? Благодаря чему они хорошо работают в сценариях использования, для которых предназначены? В этой презентации я познакомлю вас с внутренней структурой каждого из этих типов индексов и расскажу, каковы их сильные и слабые стороны.

  • Ronan Dunklau
    Ronan Dunklau Dalibo DBA
    45 мин

    Multicorn: разработка Foreign Data Wrapper'ов на языке Python

    Multicorn - это обобщенный Foreign Data Wrapper (FDW, интерфейс для подключения внешних источников данных, устоявшегося русского названия пока нет), предоставляющий возможность разработки конкретных FDW на языке Python, что упрощает их разработку.

    Мы узнаем:

    • Что такое FDW, как работает Multicorn, и какие готовые FDW поставляются вместе с ним.
    • Как написать свой FDW на python, включая новый интерфейс IMPORT FOREIGN SCHEMA, появившийся в версии 9.5.
    • Внутренности Multicorn: что он делает и что не делает внутри.

    После общего рассмотрения FDW и Multicorn, мы детальнее рассмотрим некоторые FDW, поставляемые с ним.

    Затем проведем полный тур по API Multicorn, чтобы научить вас создавать FDW на Python, включая следующие детали:

    • испольование определений таблиц
    • пробрасывание WHERE
    • ограничения колонок
    • как влиять на планировщик
    • как писать во внешнюю таблицу
    • как работать с импортом внешней схемы
    • пробрасывание ORDER BY
    • управление транзакциями

    Все это будет объяснено наглядно, с примерами кода, позволяющими слушателям с нуля создать свой FDW на Python.