title

text

Владимир Ситников
Владимир Ситников ООО НетКрэкер Инженер по производительности
18:00 05 февраля
22 мин

PostgreSQL и JDBC: выжимаем все соки

Все говорят, что для максимальной производительности работы из Java с базой данных нужно использовать PreparedStatements и Batch DML. Практика показывает, что нельзя слепо идти на поводу у прописных истин. Нужно понимать особенности конкретной базы и характера передаваемых данных. В докладе мы рассмотрим то, как эффективное использование протокола PostgreSQL позволяет добиться высокой производительности при выборке и сохранении данных. На примерах увидим как простые изменения в коде приложения и JDBC драйвера на порядок ускоряют запросы. Мы увидим как задействовать механизм server prepared statements из клиенсткого кода и узнаем его узкие места. Обсудим средства эффективной передачи данных в базу. Многие обсуждаемые доработки недавно вошли в состав официального JDBC драйвера. Доклад будет полезен не только Java программистам, т.к. многие подводные грабли вытекают из самого протокола общения PostgreSQL с внешним миром.

слайды

Видео

Другие доклады

  • Дмитрий Юхтимовский
    Дмитрий Юхтимовский Gilev.ru технический лидер
    22 мин

    Опыт использования больших баз 1С на PostgreSQL

    Доклад для тех, кто уже использует постгрес для 1С, а также для тех, кто только раздумывает - использовать ли. Расскажем о том, почему в компании Gilev.ru выбрали PostgreSQL для своих больших баз онлайн-сервисов, как его используют. Как с использованием этих сервисов помогают решать проблемы производительности баз на 1С, с которыми сталкиваются или могут столкнуться клиенты.

  • Константин Евтеев
    Константин Евтеев X5 FoodTech Главный архитектор
    45 мин

    Поток данных в Авито

    В рамках доклада речь пойдет о подсистеме транзакционного сбора изменений состояний объектов и сигналов о событиях; доставке этих данных получателям, обработке на различных этапах процесса.

    1 Обзор data stream и задач, решаемых с его помощью. 2 Подготовка данных: - работа с триггерами - блокировки - сигналы 3 Доставка событий 4 Прием данных 5 Особенности согласования данных

  • Д
    Дмитрий Мельник ИСП РАН ведущий разработчик
    22 мин

    Ускорение исполнения запросов в PostgreSQL с использованием JIT-компилятора LLVM

    В настоящее время в PostgreSQL для исполнения SQL-запросов используется интерпретатор. Это приводит к накладным расходам, связанным с неявными вызовами функций-обработчиков и проверок, которых можно было бы избежать при создании исполняемого кода "на лету" (JIT-компиляции) под конкретный SQL-запрос: в этом случае во время выполнения уже известна структура используемых таблиц и типы данных. Особенно это актуально для сложных запросов, где производительность процессора является основным ограничением. В настоящий момент существует два известных проекта, реализующих JIT-компиляцию в PostgreSQL: коммерческое решение Vitesse DB и open-source проект PGStorm. В первом проекте за счет использования LLVM JIT авторам удается получить ускорение до 8 раз на тестах из набора TPC-H. Второй проект реализует JIT-компиляцию запроса с использованием CUDA для исполнения его на GPU, что позволяет ускорить выполнение некоторых типов запросов на порядок.

    Наша работа посвящена добавлению поддержки JIT-компиляции SQL-запросов в PostgreSQL с использованием компиляторной инфраструктуры LLVM. В докладе будет подробно рассмотрено, как JIT-компиляция может быть использована для ускорения различных этапов исполнения SQL-запросов, а также особенности трансляции SQL-запросов в LLVM-биткод для получения эффективного исполняемого кода. Также будут представлены предварительные результаты тестирования JIT-компилятора на наборе тестов TPC-H.

  • Ильдар Мусин
    Ильдар Мусин Postgres Professional
    22 мин

    Секционирование без границ

    Механизм секционирования в Postgres имеет ряд ограничений, которые не позволяют использовать концепцию секционирования в полной мере. Среди таких ограничений можно выделить неэффективность планирования запросов для секционированных таблиц (линейный рост времени планирования при увеличении количества секций), отсутствие HASH-секционирования, необходимость ручного управления секциями. Однако, средства расширяемости Postgres предоставляют разработчику широкие возможности, позволяющие обойти некоторые ограничения. В докладе будет рассказано, как внедрившись в код планировщика удалось оптимизировать время планирования запросов. Так метод бинарного поиска позволяет добиться логарифмического роста времени планирования для RANGE-секционированных таблиц. Поэтому использование даже тысяч секций не будет приводить к существенным накладным расходам. Также удалось реализовать HASH-секционирование с близким к константному времени планирования.