title

text

Алексей Лесовский
Алексей Лесовский PostgreSQL Consulting LLC Администратор баз данных
12:00 16 марта
45 мин

Поиск и устранение проблем при эксплуатации потоковой репликации

Потоковая репликация появилась в PostgreSQL в 2010 году и практически сразу же стала очень популярной. В настоящее время практически ни одна инсталляция не обходится без использования потоковой репликации. Она надежна, высокопроизводительна и легка в настройке. Однако несмотря на все свои положительные качества, в её эксплуатации могут возникать различные проблемы и неприятные ситуации. Для диагностики и решения проблем связанных с потоковой репликацией есть как встроенные в PostgreSQL средства так и сторонние утилиты. В этом докладе я сделаю обзор инструментов и расскажу как с помощью этих средств диагностировать и устранить проблемы связанные с потоковой репликацией. Также рассмотрю проблемы которые возникают чаще всего при эксплуатации потоковой репликации и методы их решения. Доклад будет полезен DBA и системным администраторам.

слайды

Другие доклады

  • Егор Рогов
    Егор Рогов Postgres Professional эксперт
    90 мин

    ProBackup: быстро, надежно, инкрементально

    Современное состояние средств резервного копирования для PostgreSQL определенно оставляет простор для улучшений. Штатные средства дают исключительно базовую функциональность, сторонние инструменты решают некоторые, но не все, проблемы. Для того, чтобы резервная копия была надежной, могла выполняться быстро и инкрементально на уровне страниц, нужна в том числе и поддержка со стороны базы данных. На мастер-классе мы расскажем про новый инструмент резервного копирования и восстановления ProBackup, который мы разрабатываем в нашей компании, и покажем его в действии.

    Скрипт демонстрации:

    ФОТО:

  • Alvaro Hernandez
    Alvaro Hernandez 8Kdata CTO
    45 мин

    Миграция с MongoDB на PostgreSQL

    MongoDB – популярная NoSQL CУБД, используемая в основном для работы с OLTP системами. Но из-за отсутствия требований ACID (в частности, транзакций как таковых), а также серьезных проблем с производительностью при работе с OLAP/DW нагрузками, все больше пользователей MongoDB рассматривают возможность перехода на реляционные СУБД, выбирая зачастую именно PostgreSQL. Это открывает перед сообществом PostgreSQL большие возможности по “обращению” пользователей из NoSQL в SQL. В этом докладе мы расскажем о сложностях, с которыми сталкиваются пользователи MongoDB, и представим соверменные инструменты и open-source решения, с помощью которых можно осуществить миграцию на PostgreSQL в режиме реального времени или через процесс ETL. В частности, мы обсудим ToroDB Stampede – open-source решение, которое создает реплику MongoDB в режиме реального времени, конвертирует документы JSON в реляционные таблицы и сохраняет данные в PostgreSQL.

    ВИДЕО

  • Hans-Jürgen Schönig
    Hans-Jürgen Schönig Cybertec Schönig & Schönig GmbH CEO
    45 мин

    Миллиард строк в секунду на PostgreSQL

    Базы данных растут в размерах, так что нужда обрабатывать огромные объемы данных в реальном времени становится все острее. Пока производители коммерческих СУБД хвастаются своими возможностями, мы решили чуточку улучшить PostgreSQL, чтобы показать его возможности в переваривании более миллиарда строк в секунду, просто для демонстрации возможностей open source.

    Тем, для кого миллиард строк в секунду - немного, сообщаем, что это не предел, возможности гораздо больше. Приходите посмотреть, как мы делаем это.

    ВИДЕО

  • Markus Nullmeier
    Markus Nullmeier University of Heidelberg software developer
    45 мин

    Оптимизация запросов к данным типа “множество” с помощью индексов GIN, GiST, и пользовательских расширений для индексирования

    Очевидно, что множества удобно использовать в различных типах приложений. Хотя в PostgreSQL и нет встроенного типа для множеств, до некоторой степени их можно смоделировать с помощью встроенных типов “массив” и “JSONB”. Кроме того, возможность ускорения запросов с операциями вхождения уже встроена в реализацию индексов GIN.

    После краткого обзора существующей функциональности, мы рассмотрим, как добавление пользовательских типов “множество” и, в частности, модификация кода на С ("классы операторов") для индексов GIN и GiST, может повысить производительность.