title

text

Olivier Courtin
Olivier Courtin DataPink Owner & DataScientist
10:00 05 февраля
180 мин

Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.

Видео

Другие доклады

  • Н
    Николай Ларин Microsoft Program Manager
    45 мин

    Azure Database for PostgreSQL – как мы сделали глобальный масштабируемый сервис

    Azure Database for PostgreSQL - управляемый сервис баз данных на основе PostgreSQL Community Edition. Мы расскажем об архитектуре сервиса и реализации ключевых преимущств PostgreSQL сервиса в Azure, таких как высокий уровень доступности, масштабирование сервиса, встроенная защита и автоматическое резервное копирование. Включает демонстрацию возможностей сервиса с облачными приложениями и интеграцию с другими сервисами Azure.

  • Андрей Сальников
    Андрей Сальников Data Egret DBA
    45 мин

    Практика обновления версий PostgreSQL

    В большинстве своем, системные администраторы и ДБА бояться как огня делать мажорные обновления версий баз данных (RDBMS), особенно если эта база данных в эксплуатации и имеет достаточно высокую нагрузку. Главной причиной тому некоторый даунтайм базы данных, который всегда подразумевается при планировании таких работ.

    На практике, такого рода upgrade занимает довольно длительное время и зачастую администраторам с малым опытом подобных операций приходится откатываться на старую версию баз данных из-за достаточно банальных ошибок, которые можно было бы избежать еще на этапе подготовки.

    В Data Egret мы накопили огромный опыт проведения мажорных апгрейдов PostgreSQL в проектах, где нет права на ошибку. Я поделюсь своим опытом и расскажу о следующих шагах процесса: как правильно подготовиться к upgrade-у PostgreSQL? что необходимо сделать на этапе подготовки? как запланировать последовательность действий на сам upgrade? как провести процедуру upgrade-а успешно, без возврата на предыдущую версию бд? как минимизировать или вообще избежать простоя всей системы во время upgrade-а? какие действия необходимо выполнить после успешного upgrade-а PostgreSQL? Я также расскажу про две наиболее популярные процедуры апгрейда PostgreSQL - pg_upgrade и pg_dump/pg_restore, плюсы и минусы каждого из методов и расскажу про все типичные проблемы на всех этапах этой процедуры, и как их избежать.

    Доклад будет интересен как новичкам так и тем ДБА которые уже давно работают с PostgreSQL, но хотят побольше узнать о том как правильно планировать и проводить upgrade максимально безболезненно.

  • Алексей Лустин
    Алексей Лустин SilverBulleters, LLC CTO
    45 мин

    Docker, PostgreSQL, Продуктив ....

    Я бы хотел поделиться наработками в части использования PostgreSQL в докерезированных средах, рассказать, с какими особенностями вам придется столкнуться и какие дополнительные инструменты для этого понадобятся.

    • Какие проблемы решает Docker для PostgreSQL, например PostgreSQLPro.9.6
    • Как работать команде ИТ в условиях использования Docker на разработческих, приемочных и продуктивных контурах
      • Использование хранилища образов и серверов сборок для тестирования самого образа
    • С чем придется столкнуться в продуктиве
      • В части сетевой активности
      • Организации персистентных хранилищ для Docker
      • Дополнительных служб и сервисов
      • В части балансировки и отказоустойчивости
    • Как запустить у себя приложения, использующие PostgreSQL, такие как:
      • SonarQube
      • Gitlab
      • База 1С

  • Eren Basak
    Eren Basak Citus Data Software Development Engineer
    45 мин

    Использование PITR в распределенных cистемах на базе PostgreSQL

    В Postgres есть возможность восстановления данных на момент времени (PITR), которая позволяет нам "отправляться" в прошлое. В этом докладе мы обсудим, какие существуют основные сценарии использования этой функциональности, как подготовить базу данных к восстановлению на момент времени, настроив хорошую систему бэкапов и транcляции WAL-файлов, а также рассмотрим конкретные примеры. Мы подробнее остановимся на том, как применять PITR на распределенных системах и кластерах с шардингом, затронув типичные проблемы подобных конфигураций, такие как разница во времени, и предложим возможные способы их решения - например, двухфазный коммит и pg_create_restore_point.