Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python
На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
Видео
Другие доклады
-
Кирилл Боровиков ООО "Компания "Тензор" Технический директор
explain.sbis.ru - массовая оптимизация запросов
Как оптимизировать производительность запросов в PostgreSQL? Как это делать, если серверов - сотни, а баз - тысячи? В "Тензоре" мы разработали для этого отдельный инструмент - explain.sbis.ru: - для синхронного сбора и анализа запросов - для визуализации планов выполнения - для мониторинга ошибок в БД
-
Игорь Успенский Rambler&Co Системный администратор
PostgreSQL SaaS в Rambler&Co
Rambler&Co - это множество изданий, сервисов и проектов. Появляются новые и растут существующие. Такой среде нужна надежная, отказоустойчивая, масштабируемая, автоматизированная система.
Расскажу об устройстве нашего PostgreSQL SaaS, какие инструменты и технологии мы используем. Кворум из 3 Дата-центров. Единая точка входа для клиентов на основе динамической маршрутизации. Аварийное переключение мастера. Прозрачное масштабирование на чтение. Создание реплики без нагрузки на кластер. Прозрачный перенос PostgreSQL cluster на другие серверы. Актуализация dev окружения из prod для разработки. Резервное копирование с компрессией и использованием нескольких CPU на стороне database, восстановление одной БД из basebackup. Мониторинг sql запросов.
-
Андрей Зубков ООО "Пармалогика" Администратор баз данных
Инструмент анализа исторической нагрузки или "AWR для Postgres"
Администратор баз данных регулярно сталкивается с необходимостью поиска проблемных запросов в своих базах данных. Для оперативного поиска хорошо подходит PGCenter, но что делать если проблемы производительности наблюдались в прошлом? В этом докладе я хочу поделиться своим опытом разработки и применения инструментария, позволяющего производить ретроспективный анализ нагрузки запросов в базах данных PostgreSQL - pg_profile
-
WWiktor Brodło Adjust GmbH Системный администратор
Bagger: как мы мигрировали 1 PB данных с Elasticsearch на PostgreSQL
В своем выступлении я расскажу о том, как группа сисадминов набила шишки, пытаясь реанимировать петабайтный кластер баз данных Elasticsearch, и в конце концов решила заменить его проверенными технологиями: PostgreSQL, Kafka, немного Redis, много клея, и типичное сисадминское упрямство. Результатом стал Bagger - ответ сисадмина на вызов больших данных. Быстрое, надежное, устойчивое к отказам хранилище, используемое в основном для логирования временных событий. Bagger получил свое имя по названию серии ковшовых экскаваторов, одних из крупнейших наземных транспортных средств, когда-либо производимых человеком. Как эти экскаваторы прокапывают тонны материала, так и наш Bagger способен прокопаться через тонны данных.