title

text

Валерий Косарев
Валерий Косарев - начальник отдела
15:30 06 февраля
22 мин

Подключаемое хранилище для больших объектов

Хранение бинарных данных в таблицах базы данных иногда является хорошим решением для конкретного проекта. Но иногда, в силу изменения условий или недостаточной проработки решения, такое хранение становится настоящей головной болью. И даже если есть понимание, как и где нужно разместить такие данные, переход к новым решениям зачастую очень не прост, часто требуется доработка в прикладном коде и останов системы для миграции. В докладе представляется частное решение подобной проблемы. Разработанный extension позволяет освободить базу от таких данных, перекладывая бинарные данные в хранилище Ceph и не только. Причем прозрачно для приложений.

Слайды

Видео

Другие доклады

  • Борис Нейман
    Борис Нейман Mellanox
    Андрей Николаенко
    Андрей Николаенко Скала-Р архитектор
    Артур Закиров
    Артур Закиров Postgres Professional Разработчик
    45 мин

    Сетевые ускорения в комплексе Скала-СР / Postgres Pro: настоящее и будущее

    В прошлом году мы представили кластерную машину баз данных Скала-СР / Postgres Pro, основной особенностью которой стала аппаратная и программная поддержка прямого доступа к оперативной памяти удалённого узла (RDMA). Первые комплексы уже установлены у заказчиков и уже с первой реализацией стали возможны конструкции, неосуществимые без RDMA и функции разгрузки CPU, доступной на сетевом оборудовании Mellanox. Тем не менее, возможности, которые даёт это оборудование, гораздо шире, и данный доклад посвящён текущим работам и перспективным направлениям развития.

  • Андрей Сальников
    Андрей Сальников Data Egret DBA
    45 мин

    Практика обновления версий PostgreSQL

    В большинстве своем, системные администраторы и ДБА бояться как огня делать мажорные обновления версий баз данных (RDBMS), особенно если эта база данных в эксплуатации и имеет достаточно высокую нагрузку. Главной причиной тому некоторый даунтайм базы данных, который всегда подразумевается при планировании таких работ.

    На практике, такого рода upgrade занимает довольно длительное время и зачастую администраторам с малым опытом подобных операций приходится откатываться на старую версию баз данных из-за достаточно банальных ошибок, которые можно было бы избежать еще на этапе подготовки.

    В Data Egret мы накопили огромный опыт проведения мажорных апгрейдов PostgreSQL в проектах, где нет права на ошибку. Я поделюсь своим опытом и расскажу о следующих шагах процесса: как правильно подготовиться к upgrade-у PostgreSQL? что необходимо сделать на этапе подготовки? как запланировать последовательность действий на сам upgrade? как провести процедуру upgrade-а успешно, без возврата на предыдущую версию бд? как минимизировать или вообще избежать простоя всей системы во время upgrade-а? какие действия необходимо выполнить после успешного upgrade-а PostgreSQL? Я также расскажу про две наиболее популярные процедуры апгрейда PostgreSQL - pg_upgrade и pg_dump/pg_restore, плюсы и минусы каждого из методов и расскажу про все типичные проблемы на всех этапах этой процедуры, и как их избежать.

    Доклад будет интересен как новичкам так и тем ДБА которые уже давно работают с PostgreSQL, но хотят побольше узнать о том как правильно планировать и проводить upgrade максимально безболезненно.

  • Иван Панченко
    Иван Панченко Postgres Professional рзаместитель генерального директора
    90 мин

    Полнотекстовый поиск: от A до Ω

    Мастер-класс о том, как правильно организовать полнотекстовый поиск в Postgres, с учетом последних новинок. Все рецепты для создания готового приложения: конфигурация словарей, индексы, фасетный поиск, многоязыковой поиск, нечеткий поиск, подсказки, ранжирование. Участники мастер-класса получат тестовую базу данных, на которой смогут проделать все нужные упражнения.

  • Olivier Courtin
    Olivier Courtin DataPink Owner & DataScientist
    180 мин

    Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

    На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.