title

text

Камиль Исламов
Камиль Исламов Stickeroid Ai CTO
18:00 06 февраля
22 мин

PostgreSQL и MQTT в качестве системы обработки IoT данных

MQTT - это эффективный протокол обмена данными для IoT устройств. Построенная с помощью доработанного EMQTT плагина, архитектура IoT проекта использует PostgreSQL в качестве центра обработки и хранения данных, поступающих от сенсоров в реальном времени. В докладе будет представлен пример решения программно-аппаратной платформы IoT, реализованного на базе протокола MQTT, где PostgreSQL выполняет ключевые функции, обеспечивая оперативный учёт, сбор и хранение данных от распределённой сети IoT устройств.

Слайды

Видео

Другие доклады

  • Дмитрий Сарафанников
    Дмитрий Сарафанников Яндекс Разработчик
    45 мин

    Как сохранить статистику при мажорном обновлении, и что за это бывает

    Ни для кого не секрет, что статистика не переносится при мажорном обновлении. Для небольших и не сильно нагруженных баз это не проблема, можно быстро собрать новую статистику. Но у нас есть базы объемом порядка 5ТБ и нагрузкой порядка 100k rps, для которых это стало большой проблемой: взлетая без статистики, реплики даже не могли накатывать WAL. В своем докладе расскажу, на какие хитрости мы пошли, чтобы произвести обновление этих баз в условиях требований 100% доступности read only, о том, какие ошибки допустили, и о том как эти ошибки мучительно исправляли. Результатом этих ошибок стало расширение pg_dirty_hands, в котором мы будем собирать различные хаки, которые можно назвать «фол последней надежды».

  • Иван Фролков
    Иван Фролков Postgres Professional инженер-консультант
    45 мин

    Управление потоками заданий в PostgresPro Enterprise

    Нередко требуется выполнить асинхронно не одну транзакцию, а несколько в строго определенной последовательности. Для реализации подобного рода задач существует несколько решений, и одной из них - модуль pgpro_scheduler.

  • Григорий Смолкин
    Григорий Смолкин Ozon Инженер
    90 мин

    Резервное копирование PostgreSQL с помощью pg_probackup: высокая производительность и острая форма паранойи

    Как бэкапировать PostgreSQL? Как хранить сделанные бэкапы? Как валидировать бэкап? Как валидировать PostgreSQL и можно ли ему вообще доверять? Можно ли доверять твоему инструменту? Как сделать всю эту паранойю удобной и производительной, если СУБД не помогает в этом деле? На какие компромиссы можно идти и на какие ни в коем случае нельзя? Создавая свой инструмент бэкапирования, мы были вынуждены искать ответы на эти и многие другие вопросы, о чем и хотелось бы рассказать.

  • Олег Бартунов
    Олег Бартунов Postgres Professional генеральный директор
    Никита Глухов
    Никита Глухов Postgres Professional Разработчик
    45 мин

    "Умное" индексирование jsonb

    PostgreSQL имеет репутацию универсальной СУБД,то есть базы данных, с которой можно стартовать практически любой проект, так как она имеет богатую функциональность,отличную репутацию и большое сообщество. Ее расширяемость позволяет добавлять недостающие функции силами прикладных программистов без остановки системы.

    Я расскажу про то, как мы в Postgres Professional улучшили работу с индексами, а именно, добавили возможность использования параметров для их создания. В качестве примера, я расскажу про "умное" индексирование jsonb с помощью нашего расширения jsquery. "Умное" индексирование означает, что можно задавать подмножество jsonb для индексирование с помощью jspath,нового типа данных jsquery, который можно будет указывать в качестве параметра при создании индекса. Таким образом, индекс будет меньше,что положительно скажется на производительности запросов и лучшей конкурентности. Кроме того, параметры к оп классам позволят гибче работать с уже существующими индексами, а также помогут при индекскации jsonb с помощью jsonpath из ожидаемого SQL/JSON.