title

text

Н
Николай Ларин
11:00 07 февраля
45 мин

Azure Database for PostgreSQL – как мы сделали глобальный масштабируемый сервис

Azure Database for PostgreSQL - управляемый сервис баз данных на основе PostgreSQL Community Edition. Мы расскажем об архитектуре сервиса и реализации ключевых преимущств PostgreSQL сервиса в Azure, таких как высокий уровень доступности, масштабирование сервиса, встроенная защита и автоматическое резервное копирование. Включает демонстрацию возможностей сервиса с облачными приложениями и интеграцию с другими сервисами Azure.

слайды

Видео

Другие доклады

  • Григорий Смолкин
    Григорий Смолкин
    90 мин

    Резервное копирование PostgreSQL с помощью pg_probackup: высокая производительность и острая форма паранойи

    Как бэкапировать PostgreSQL? Как хранить сделанные бэкапы? Как валидировать бэкап? Как валидировать PostgreSQL и можно ли ему вообще доверять? Можно ли доверять твоему инструменту? Как сделать всю эту паранойю удобной и производительной, если СУБД не помогает в этом деле? На какие компромиссы можно идти и на какие ни в коем случае нельзя? Создавая свой инструмент бэкапирования, мы были вынуждены искать ответы на эти и многие другие вопросы, о чем и хотелось бы рассказать.

  • W
    Wiktor Brodło
    45 мин

    Bagger: как мы мигрировали 1 PB данных с Elasticsearch на PostgreSQL

    В своем выступлении я расскажу о том, как группа сисадминов набила шишки, пытаясь реанимировать петабайтный кластер баз данных Elasticsearch, и в конце концов решила заменить его проверенными технологиями: PostgreSQL, Kafka, немного Redis, много клея, и типичное сисадминское упрямство. Результатом стал Bagger - ответ сисадмина на вызов больших данных. Быстрое, надежное, устойчивое к отказам хранилище, используемое в основном для логирования временных событий. Bagger получил свое имя по названию серии ковшовых экскаваторов, одних из крупнейших наземных транспортных средств, когда-либо производимых человеком. Как эти экскаваторы прокапывают тонны материала, так и наш Bagger способен прокопаться через тонны данных.

  • Михаил Балаян
    Михаил Балаян
    45 мин

    MVCC в картинках и когда длинные транзакции - это проблема

    Многие из нас знают о том, что именно MVCC обеспечивает многопользовательский доступ к данным во многих реляционных базах данных, которые гарантируют согласованность и изолированность транзакций. Но именно глубокое понимание реализации этого механизма в PostgreSQL позволяет нам лучше понимать процессы, происходящие в базе, проектировать логику работы приложений и структуры таблицы, чтобы быть наиболее эффективными в мире высоких нагрузок. На примере одного из процессов в нашем продукте мы разберемся в том, как реализована MVCC в PostgreSQL и раскопаем одну из особенностей, когда казалось бы, несвязанные активности могут влиять друг на друга.

  • Константин Книжник
    Константин Книжник
    45 мин

    VOPS: Векторное расширение Постгреса

    СУБД Постгрес успешно используется во многих OLTP приложениях, выполняющих большое число простых запросов. Но для аналитики, требующей обработки большого количества данных, Постгрес на порядки отстаёт от специализированных СУБД, оптимизированных для массовой обработки данных. Скорость работы Постгреса для OLAP запросов сдерживается следующими факторами:

    • Большие накладные расходы на распаковку записей.
    • Затраты на интерпретацию запроса (Постгрес интерпретирует план выполнения запроса)
    • Поддержка работы с абстрактными типами
    • Недостатки PULL модели выполнения запроса
    • Издержки MVCC

    Все эти проблемы могут быть в большой степени решены за счёт использования векторного исполнителя запросов, который за одну операцию в состоянии обработать целый блок (вектор) значений. В этом докладе описывается способ добавления векторных операций в Посгрес, с помощью стандартного механизма расширения Посгреса, без внесения изменений в ядро. Такие механизмы Посгреса как UDT (определяемые пользователем типы), FDW (абстракция внешнего поставщика данных), расширения исполнителя запросов позволяют реализовать в Постгресе вертикальный таблицы, с которыми можно работать как с обычными таблицами. Но на порядки быстрее благодаря использованию векторных операций.