title

text

Н
Николай Ларин Microsoft Program Manager
11:00 07 февраля
45 мин

Azure Database for PostgreSQL – как мы сделали глобальный масштабируемый сервис

Azure Database for PostgreSQL - управляемый сервис баз данных на основе PostgreSQL Community Edition. Мы расскажем об архитектуре сервиса и реализации ключевых преимущств PostgreSQL сервиса в Azure, таких как высокий уровень доступности, масштабирование сервиса, встроенная защита и автоматическое резервное копирование. Включает демонстрацию возможностей сервиса с облачными приложениями и интеграцию с другими сервисами Azure.

Слайды

Видео

Другие доклады

  • Николай Рыжиков
    Николай Рыжиков Health Samurai CTO
    45 мин

    Использование PostgreSQL и Сlojure для разработки приложений, ориентированных на работу с базами данных

    Если честно взглянуть на большинство наших бизнес-приложений, то они через провод собирают данные в базу и раздают их в обратном направлении. Что, если не пытаться воздвигать стену абстракций между приложением и базой данных (ORM), а постараться использовать их симбиоз - сильные стороны и индивидуальные особенности.

    Я расскажу как мы используем postgresql и clojure для создания data intensive приложений для медицины.

    • functional relational programming
    • jsonb для моделирования сложной предметной области
    • функциональные индексы и расширение json-knife для поиска в jsonb
    • реализация graphql на postgres
    • logical replication для построения реактивных интеграций
    • асинхронный JDBC-free коннектор к postgresql на netty

  • Алексей Лесовский
    Алексей Лесовский Data Egret PostgreSQL DBA
    45 мин

    Давайте отключим vacuum?!

    Такой призыв часто возникает, когда в PostgreSQL возникают проблемы, и главным подозреваемым оказывается vacuum. По опыту, многие наступают на эти грабли, и мне с коллегам по Data Egret нередко приходится разгребать последствия, так как потом всё становится ещё хуже. Но если обратить внимание на сам vacuum, то, пожалуй, нет такого человека, который бы использовал Postgres, и при этом ничего не знал про вакуум. Ведь история вакуума начинается относительно давно, и в интернете можно найти массу как старых, так и новых постов про вакуум, объемные дискуссии в списках рассылки. Несмотря на то, что тема вакуума подробно описана в официальной документации к PostgreSQL, новые посты и новые дискуссии будут появляться и дальше. Возможно, поэтому с вакуумом связано очень много мифов, баек, страшилок и заблуждений. Между тем, вакуум является одним из важнейших компонентов PostgreSQL, и его работа напрямую сказывается на производительности. В одном докладе невозможно рассказать про вакуум абсолютно всё, но я бы хотел раскрыть ключевые моменты, связанные с вакуумом, такие как его внутреннее устройство, основные подходы к его настройке, наблюдение за производительностью, мониторинг, и что делать в случае, когда вакуум - главный подозреваемый во всех бедах. Ну и, конечно же, хочется развеять распространенные мифы и заблуждения, связанные с вакуумом.

  • Егор Рогов
    Егор Рогов Postgres Professional эксперт
    90 мин

    Мастер-класс: Больше индексов, хороших и разных

    "Не мог он GIN от SP-GiST-а, как мы ни бились, отличить", говорил классик. А вы можете? Этот мастер-класс посвящен индексам, которые хоть и не так часто используются, как обычное B-дерево, но могут сильно выручить в трудную минуту. Мы посмотрим, как устроены эти индексы и в каких случаях они могут быть успешно применены. Заодно поговорим и об особенностях индексного доступа в PostgreSQL. Чтобы провести время с пользой, от слушателей потребуется некоторое знакомство с PostgreSQL и умение читать планы несложных запросов.

    Материалы мастер-класса

    Резервную копию БД с демонстрационными данными можно скачать тут:

  • Olivier Courtin
    Olivier Courtin DataPink Owner & DataScientist
    180 мин

    Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

    На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.