title

text

Андрей Зубков
Андрей Зубков
16:15 07 февраля
45 мин

Инструмент анализа исторической нагрузки или "AWR для Postgres"

Администратор баз данных регулярно сталкивается с необходимостью поиска проблемных запросов в своих базах данных. Для оперативного поиска хорошо подходит PGCenter, но что делать если проблемы производительности наблюдались в прошлом? В этом докладе я хочу поделиться своим опытом разработки и применения инструментария, позволяющего производить ретроспективный анализ нагрузки запросов в базах данных PostgreSQL - pg_profile

слайды

Видео

Другие доклады

  • Камиль Исламов
    Камиль Исламов
    22 мин

    PostgreSQL и MQTT в качестве системы обработки IoT данных

    MQTT - это эффективный протокол обмена данными для IoT устройств. Построенная с помощью доработанного EMQTT плагина, архитектура IoT проекта использует PostgreSQL в качестве центра обработки и хранения данных, поступающих от сенсоров в реальном времени. В докладе будет представлен пример решения программно-аппаратной платформы IoT, реализованного на базе протокола MQTT, где PostgreSQL выполняет ключевые функции, обеспечивая оперативный учёт, сбор и хранение данных от распределённой сети IoT устройств.

  • Брюс Момжиан
    Брюс Момжиан
    45 мин

    Защита PostgreSQL от внешних атак

    Доклад раскроет все известные способы, которыми не имеющие авторизованного доступа к базе данных злоумышленники могут выкрасть пароли Postgres, просмотреть совершенные тразакции и даже вмешаться в работу сессии, возвращая фальсифицированные данные.

    Postgres обладает встроенными средствами защиты для предотвращения этих угроз, однако администраторы баз данных должны понимать уязвимости для лучшей защиты от них.

  • Olivier Courtin
    Olivier Courtin
    180 мин

    Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

    На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.

  • А
    Александр Панкратов
    Александр Погодин
    Александр Погодин
    45 мин

    Технология миграции тиражных клиент-серверных приложений с СУБД Oracle в СУБД PostgreSQL: Принципы, подходы и особенности

    В докладе рассматриваются подходы и варианты реализации миграции клиент-серверного приложения Парус-Бюджет 8 с платформы Oracle Database на платформу PostgreSQL без изменения клиентского приложения для Desctop и Web. Предлагаемое решение позволяет осуществить прозрачный переход существующих пользовательских рабочих мест.