title

text

Андрей Зубков
Андрей Зубков ООО "Пармалогика" Администратор баз данных
16:15 07 февраля
45 мин

Инструмент анализа исторической нагрузки или "AWR для Postgres"

Администратор баз данных регулярно сталкивается с необходимостью поиска проблемных запросов в своих базах данных. Для оперативного поиска хорошо подходит PGCenter, но что делать если проблемы производительности наблюдались в прошлом? В этом докладе я хочу поделиться своим опытом разработки и применения инструментария, позволяющего производить ретроспективный анализ нагрузки запросов в базах данных PostgreSQL - pg_profile

Слайды

Видео

Другие доклады

  • Артур Закиров
    Артур Закиров Postgres Professional Разработчик
    Борис Нейман
    Борис Нейман Mellanox
    Андрей Николаенко
    Андрей Николаенко Скала-Р архитектор
    45 мин

    Сетевые ускорения в комплексе Скала-СР / Postgres Pro: настоящее и будущее

    В прошлом году мы представили кластерную машину баз данных Скала-СР / Postgres Pro, основной особенностью которой стала аппаратная и программная поддержка прямого доступа к оперативной памяти удалённого узла (RDMA). Первые комплексы уже установлены у заказчиков и уже с первой реализацией стали возможны конструкции, неосуществимые без RDMA и функции разгрузки CPU, доступной на сетевом оборудовании Mellanox. Тем не менее, возможности, которые даёт это оборудование, гораздо шире, и данный доклад посвящён текущим работам и перспективным направлениям развития.

  • Иван Фролков
    Иван Фролков Postgres Professional инженер-консультант
    45 мин

    Управление потоками заданий в PostgresPro Enterprise

    Нередко требуется выполнить асинхронно не одну транзакцию, а несколько в строго определенной последовательности. Для реализации подобного рода задач существует несколько решений, и одной из них - модуль pgpro_scheduler.

  • Christopher Travers
    Christopher Travers DeliveryHero SE Principle Engineer
    45 мин

    PostgreSQL на 20TB и выше

    В последние шесть месяцев я работал с массивным OLAP окружением, охватывающим порядка 400TB данных. Приходите и узнайте, как мы заставили это все работать, с какими трудностями сталкивались и какие навыки нам потребовались.

    Этот доклад будет иметь мало общего с докладом про 10TB и выше, так как среды данных значительно отличаются. Мы рассмотрим эффективность аналитики, выравнивание данных, причины для разработки расширений на С, перемещение данных между серверами в нескольких центрах обработки данных.

  • Андрей Литуненко
    Андрей Литуненко 2ГИС Программист
    45 мин

    Как мы распрощались с MongoDB и перешли на PostgreSQL

    В своем докладе я поделюсь опытом переноса, конвертацией NoSQL-данных в реляционный вид и расскажу, как нам удалось ускорить приложение в 2 раза.

    Изначально для хранения данных мы использовали PosgtgreSQL и MongoDB. На практике мы выяснили, что такое разделение крайне неудобно. Мы тратили уйму времени и внимания.

    Расскажу, как с помощью mosql мы перенесли данные из MongoDB в PostgreSQL. Теперь все данные могут быть получены одним запросом, а схема таблиц обеспечивает консистентность данных.