title

text

Дорофей Пролесковский
Дорофей Пролесковский Juno GIS Engineer
15:00 02 марта
22 мин

Что нового в PostGIS 3.1

PostGIS - расширение для работы с пространственными данными в PostgreSQL. В этом докладе будут рассмотрены все последние изменения в экосистеме вокруг PostGIS с комментариями от разработчика.

Видео

Другие доклады

  • Николай Самохвалов
    Николай Самохвалов Nombox LLC Основатель
    45 мин

    Автоматическое тестирование изменений БД (DDL, DML)

    В высоконагруженном проекте любое изменение несёт в себе заметные риски сбоя или деградации производительности. Мы видим, как растёт сложность систем, количество серверов БД, релизов в неделю, автоматизация всего и вся в CI/CD pipelines, контейнерах, Kubernetes.

    Но вот когда речь заходит о тестировании изменений в БД — от банального добавления индекса до сложных, почти «хирургических» операций вроде замены в первичного ключа int4 на int8 в многотерабайтной таблице под нагрузкой — тут налицо отставание технологий и методологий. В лучшем случае изменения проверяются визуально, и тут уж всё зависит от опыта и усталости проверяющего.

    В докладе мы расскажем как мы (Postgres.ai) закрываем этот вопрос с помощью нашего решения Database Lab:

    • моментальная выдача независимых тонких клонов для многотерабайтных БД, готовых к проверкам,
    • интеграция в существующие CI/CD-инструменты и рабочий процесс,
    • сбор метрик, наиболее важных для принятия решения об одобрении/отклонении изменения (и даже автоматическое отклонения совсем опасных действий).

  • Daniele Varrazzo
    Daniele Varrazzo Codice Lieve Директор
    90 мин

    Python для PostgreSQL: как его использовать и преуспеть в этом?

    В рамках данного мастер-класса мы посмотрим, как обеспечить бесперебойную связь между Python и PostgreSQL. На практических примерах мы разберём, как подключиться к серверу, обеспечить обмен данными, управлять уведомлениями и транзакциями, передавая параметры безопасно и в понятной форме.

    Мы рассмотрим psycopg2, наиболее часто используемую библиотеку-адаптер PostgreSQL для Python, а также анонсируем предстоящий релиз psycopg3: что останется прежним, что изменится, как лучше реализовать программу на Python, чтобы использовать PostgreSQL по максимуму.

  • Андрей Зубков
    Андрей Зубков Postgres Professional Руководитель группы систем мониторинга
    45 мин

    Анализатор исторической нагрузки pg_profile/pgpro_pwr и его новые возможности

    Речь пойдет о простом инструменте стратегического анализа исторической нагрузки. Расширение предназначено для поиска проблем производительности в базах данных Postgres. Расскажу о принципах работы расширения, его применимости, возможностях и развитии. У pg_profile появилась расширенная ветка pgpro_pwr, предназначенная для работы в дистрибутивах PostgresPro с расширенным набором статистик производительности. Покажу на простых примерах преимущества, доступные в базах PostgresPro Enterprise Edition и PostgresPro Standard Edition.

  • Ibrar Ahmed
    Ibrar Ahmed Percona LLC Senior Database Architect
    90 мин

    Оптимизация производительности PostgreSQL

    PostgreSQL - одна из лидирующих технологий среди СУБД с открытым исходным кодом. По умолчанию конфигурация PostgreSQL не подходит для конкретной рабочей нагрузки. Эта дефолтная конфигурация PostgreSQL рассчитана на то, чтобы пользователь мог запустить Postgres на любой системе, используя минимум ресурсов. Следовательно, установленный на высокопроизводительной машине экземпляр PostgreSQL в конфигурации по умолчанию не даст оптимальной производительности, потому что машина настроена так, чтобы использовать все доступные ресурсы. PostgreSQL предоставляет возможности для настройки СУБД под вашу рабочую нагрузку и характеристики вашего оборудования. Помимо PostgreSQL также можно настроить ядро Linux для оптимизации работы СУБД под нагрузкой. В рамках данного мастер-класса мы научимся настраивать некоторые параметры PostgreSQL и посмотрим, какой эффект даёт такая настройка. Однако основной акцент мы сделаем на том, как сконфигурировать Linux для улучшения производительности Postgres. Поскольку в ядре Linux так много параметров, которые можно настроить для более оптимальной работы PostgreSQL, я также поделюсь результатами сравнительного тестирования для разных значений некоторых параметров Linux.