Архитектуры с Postgres в продакшне
При использовании PostgreSQL в продакшне крайне важно реализовать стратегию высокой доступности. В случае с сервисом БД требования к высокой доступности будут касаться как самого сервиса, так и набора данных.
В рамках данного доклада мы попробуем определить потребности вашей конкретной продакшн-среды в высокой доступности и постараемся выполнить необходимые требования с использованием открытых бесплатных инструментов, разработанных для PostgreSQL. В частности, мы рассмотрим многие возможности, которые можно реализовать для Postgres, чтобы превратить его из обычного набора инструментов в реально работающий. Что это означает в контексте высокой доступности? Как выполнить эти требования?
Другие доклады
-
Daniele Varrazzo Codice Lieve Директор
Python для PostgreSQL: как его использовать и преуспеть в этом?
В рамках данного мастер-класса мы посмотрим, как обеспечить бесперебойную связь между Python и PostgreSQL. На практических примерах мы разберём, как подключиться к серверу, обеспечить обмен данными, управлять уведомлениями и транзакциями, передавая параметры безопасно и в понятной форме.
Мы рассмотрим psycopg2, наиболее часто используемую библиотеку-адаптер PostgreSQL для Python, а также анонсируем предстоящий релиз psycopg3: что останется прежним, что изменится, как лучше реализовать программу на Python, чтобы использовать PostgreSQL по максимуму.
-
Andreas Scherbaum Pivotal Principal Software Engineer
Управление PostgreSQL с помощью Ansible
Ansible — открытый бесплатный инструмент для управления конфигурацией и развёртываниями, который можно применять для управления серверами и установленным на них программным обеспечением. В данном докладе мы вкратце обсудим сам Ansible, а затем объясним, как использовать его для установки и настройки PostgreSQL на сервере. Примеры будут демонстрироваться на протяжении всего доклада.
-
Yana Krasteva Swarm64 VP Product and Innovation
Современное хранилище данных на основе PostgreSQL
Построение хранилища данных на основе PostgreSQL имеет долгую историю. Netezza, Redshift и Greenplum превратили определенные релизы PostgreSQL в решения для хранения данных. В настоящее время, с учетом тенденции к повышению производительности PostgreSQL (улучшение секционирования, статистики, JIT-компиляция и т. д.) и наличия продвинутых расширений, таких, как Swarm64 Data Accelerator, вы можете создать современное, надёжное и многофункциональное хранилище данных. В этом докладе будут рассмотрены тенденции PostgreSQL и хранилищ данных и затронуты ключевые аргументы в пользу выбора PostgreSQL для построения хранилища данных.
-
Алексей Фадеев Sibedge Старший разработчик .NET, евангелист Postgres.
Multicorn Foreign Data Wrapper против plpython
Технология Multicorn позволяет разрабатывать FDW на языке Python, что гораздо проще и быстрее создания FDW на языке C. Однако есть и обратная сторона, Multicorn FDW хорошо работают с примитивными условиями WHERE, но на чуть более сложных случаях возникают трудности, про которые я расскажу. Случаи будут рассмотрены на примере моего Multicorn FDW для получения данных OpenStreetMap. Так же я покажу примеры использования одного и того же кода в Multicorn FDW и функции на plpython, в том числе сравнение производительности. В заключение поделюсь своими выводами, когда лучше использовать plpython, а когда Multicorn FDW.