title

text

Егор Рогов
Егор Рогов Postgres Professional эксперт
14:30 01 марта
45 мин

Новое в учебных курсах Postgres Professional

Образовательные проекты нашей компании создаются, чтобы помочь в изучении PostgreSQL. В прошлом году мы сосредоточились на курсах для прикладных разработчиков: обновили базовый курс DEV1 и выпустили совершенно новый курс DEV2. Что изменилось в нашем подходе к учебным материалам, как мы видим дальнейшее развитие курсов и есть ли у нас что-то кроме них, будут ли обновлены курсы для администраторов и как это отразится на сертификации – обо всем этом я и расскажу.

Видео

Другие доклады

  • Andreas Scherbaum
    Andreas Scherbaum Pivotal Principal Software Engineer
    45 мин

    Управление PostgreSQL с помощью Ansible

    Ansible — открытый бесплатный инструмент для управления конфигурацией и развёртываниями, который можно применять для управления серверами и установленным на них программным обеспечением. В данном докладе мы вкратце обсудим сам Ansible, а затем объясним, как использовать его для установки и настройки PostgreSQL на сервере. Примеры будут демонстрироваться на протяжении всего доклада.

  • Yugo Nagata
    Yugo Nagata SRA OSS, Inc. Japan Chief Scientist
    45 мин

    Автоматическое инкрементальное обновление материализованных представлений

    Материализованное представление служит для хранения результатов запросов определения представления в БД, чтобы добиться более быстрого ответа на запрос. Однако данные в представлении устаревают после изменения базовых таблиц. Следовательно, для поддержания актуальности содержимого необходимо обновлять представление. В PostgreSQL есть команда REFRESH MATERIALIZED VIEW для обновления материализованного представления, но эта команда вычисляет его содержимое с нуля, что неэффективно в случаях, когда изменяется только небольшая часть базовой таблицы.

    Инкрементальное обновление представлений (IVM) - это метод эффективного обновления материализованных представлений, который вычисляет и применяет к материализованным представлениям только инкрементальные изменения вместо повторного вычисления. Эта функциональность требуется для быстрого обновления материализованных представлений, но еще не реализована в PostgreSQL.

    Поэтому мы разработали IVM для PostgreSQL и предлагаем реализовать его в качестве основной функции. Патч сейчас обсуждается в списке рассылки hackers. Наша реализация делает возможным автоматическое инкрементальное обновление материализованных представлений при изменении базовой таблицы. Вам не нужно писать собственную триггерную процедуру для обновления представлений. После продолжительной работы нашей команды текущая реализация IVM поддерживает некоторые возможности аггрегации, подзапросы, соединение одной таблицы (self-join), внешние соединения (outer join) и CTE (предложения WITH) в запросе определения представления. Результат оценки производительности с использованием запросов TPC-H показывает, что наша реализация IVM может обновлять материализованное представление в 200+ раз быстрее, чем повторное вычисление с помощью команды REFRESH.

    В данном докладе мы опишем нашу реализацию IVM и ее возможности.

  • Алексей Фадеев
    Алексей Фадеев Sibedge Старший разработчик .NET, евангелист Postgres.
    22 мин

    Multicorn Foreign Data Wrapper против plpython

    Технология Multicorn позволяет разрабатывать FDW на языке Python, что гораздо проще и быстрее создания FDW на языке C. Однако есть и обратная сторона, Multicorn FDW хорошо работают с примитивными условиями WHERE, но на чуть более сложных случаях возникают трудности, про которые я расскажу. Случаи будут рассмотрены на примере моего Multicorn FDW для получения данных OpenStreetMap. Так же я покажу примеры использования одного и того же кода в Multicorn FDW и функции на plpython, в том числе сравнение производительности. В заключение поделюсь своими выводами, когда лучше использовать plpython, а когда Multicorn FDW.

  • Николай Самохвалов
    Николай Самохвалов Nombox LLC Основатель
    45 мин

    Автоматическое тестирование изменений БД (DDL, DML)

    В высоконагруженном проекте любое изменение несёт в себе заметные риски сбоя или деградации производительности. Мы видим, как растёт сложность систем, количество серверов БД, релизов в неделю, автоматизация всего и вся в CI/CD pipelines, контейнерах, Kubernetes.

    Но вот когда речь заходит о тестировании изменений в БД — от банального добавления индекса до сложных, почти «хирургических» операций вроде замены в первичного ключа int4 на int8 в многотерабайтной таблице под нагрузкой — тут налицо отставание технологий и методологий. В лучшем случае изменения проверяются визуально, и тут уж всё зависит от опыта и усталости проверяющего.

    В докладе мы расскажем как мы (Postgres.ai) закрываем этот вопрос с помощью нашего решения Database Lab:

    • моментальная выдача независимых тонких клонов для многотерабайтных БД, готовых к проверкам,
    • интеграция в существующие CI/CD-инструменты и рабочий процесс,
    • сбор метрик, наиболее важных для принятия решения об одобрении/отклонении изменения (и даже автоматическое отклонения совсем опасных действий).