Bagger: как мы мигрировали 1 PB данных с Elasticsearch на PostgreSQL
В своем выступлении я расскажу о том, как группа сисадминов набила шишки, пытаясь реанимировать петабайтный кластер баз данных Elasticsearch, и в конце концов решила заменить его проверенными технологиями: PostgreSQL, Kafka, немного Redis, много клея, и типичное сисадминское упрямство. Результатом стал Bagger - ответ сисадмина на вызов больших данных. Быстрое, надежное, устойчивое к отказам хранилище, используемое в основном для логирования временных событий. Bagger получил свое имя по названию серии ковшовых экскаваторов, одних из крупнейших наземных транспортных средств, когда-либо производимых человеком. Как эти экскаваторы прокапывают тонны материала, так и наш Bagger способен прокопаться через тонны данных.
Слайды
Видео
Другие доклады
-
Eren Basak Citus Data Software Development Engineer
Использование PITR в распределенных cистемах на базе PostgreSQL
В Postgres есть возможность восстановления данных на момент времени (PITR), которая позволяет нам "отправляться" в прошлое. В этом докладе мы обсудим, какие существуют основные сценарии использования этой функциональности, как подготовить базу данных к восстановлению на момент времени, настроив хорошую систему бэкапов и транcляции WAL-файлов, а также рассмотрим конкретные примеры. Мы подробнее остановимся на том, как применять PITR на распределенных системах и кластерах с шардингом, затронув типичные проблемы подобных конфигураций, такие как разница во времени, и предложим возможные способы их решения - например, двухфазный коммит и pg_create_restore_point.
-
ННиколай Ларин Microsoft Program Manager
Azure Database for PostgreSQL – как мы сделали глобальный масштабируемый сервис
Azure Database for PostgreSQL - управляемый сервис баз данных на основе PostgreSQL Community Edition. Мы расскажем об архитектуре сервиса и реализации ключевых преимущств PostgreSQL сервиса в Azure, таких как высокий уровень доступности, масштабирование сервиса, встроенная защита и автоматическое резервное копирование. Включает демонстрацию возможностей сервиса с облачными приложениями и интеграцию с другими сервисами Azure.
-
Брюс Момжиан EnterpriseDB Senior Database Architect
Изучаем CTE и оконные функции
От разработчиков часто требуются результаты, которые трудно получить обычными SQL-запросами. К счастью, стандартом SQL предусмотрены мощные средства - общие табличные выражения (CTE) и оконные функции, который весьма расширяют круг возможного.
SQL является декларативным языком, что означает, что пользователь только формирует запрос, с база данных определяет, как его следует оптимально исполнять. CTE позволяют запросам быть более императивными, дают возможность организовать циклы и обработку иерархических структур, что обычно делается только в императивных языках.
Обычные SQL-запросы возвращают наборы строк, в которых одна строка не зависит от других. Оконные функции позволяют добавлять в запрос поля, значения которых зависят от других строк.
Этот мастер-класс поможет прикладным разработчикам в использовании CTE, что позволит перенести часть логики из приложения в SQL-код, и разъяснит возможности оконных функций и особенности их использования.
Видео
Часть I «Programming the SQL Way with CTE»
Часть II «Postgres Window Magic»
-
Дмитрий Павлов Arenadata Big Data solutions Senior Consultant
Дрессируем Greenplum
С необходимостью завести в корпоративном IT-ландшафте аналитическую СУБД сталкивается большинство компаний, чей бизнес так или иначе затрагивает информационные технологии. В докладе я расскажу о самых главных нюансах развёртывания и эксплуатации распределённой аналитической open-source СУБД, основанной на PostgreSQL - Greenplum, разберу типичные ошибки при её использовании, приведу best practices и обращу внимание на тонкие места.