title

text

Максим Вихарев
Максим Вихарев Alytics Технический директор
17:00 06 февраля
45 мин

GreenHouseSQL - масштабируемая система аналитики на postgresql, greenplum и clickhouse

На pgconf’17 я рассказывал про нашу велосипедную систему аналитики на основе PostgreSQL. После этого мы посматривали в сторону хадупов, s3, престо, друидов, вертики, пентахо и прочих страшил. А потом перестали cтрадать и сомневаться и просто добавили к постгресу готовые Greenplum и Clickhouse. Получив в итоге потрясающую скорость, простую миграцию, простое обслуживание, надежность и горизонтальное масштабирование, восстановление после сбоев в две команды, уменьшение костов на инфрастуктуру и широкие функциональные возможности за счет сочетания ANSI SQL, MPP и In-memory. Оставаясь в парадигме Open-source и полноценного SQL. В итоге у нас получилось то, что мы назвали GreenHouseSQL - наша внутренняя платформа данных полного цикла. В докладе вскроем простоту внутренностей решения и рассмотрим компоненты стека под микроскопом, расскажем об их достоинствах и недостатках, фишках начала работы с Greenplum, зачем нам Clickhouse, что осталось PostgreSQL'у и как вообще все это работает.

слайды

Видео

Другие доклады

  • Джигнеш Шах
    Джигнеш Шах Amazon Web Services Менеджер службы реляционной базы данных PostgreSQL
    45 мин

    Глубокое погружение во вселенную RDS PostgreSQL

    В ходе доклада мы с головой окунемся в пространство восхитительных возможностей службы Amazon RDS для PostgreSQL, включая новые версии релизов PostgreSQL, новые расширения, более крупные таблицы. Мы посмотрим на бенчмарки новых типов сущностей RDS и их ценность, на то, как работают высокая доступность и масштабируемость по чтению. Разберем уроки, которые мы вынесли из опыта управления большим парком сущностей с помощью PostgreSQL, включая важные настройки и возможные подводные камни, связанные с pg_upgrade.

  • Максим Вихарев
    Максим Вихарев Alytics Технический директор
    45 мин

    GreenHouseSQL - масштабируемая система аналитики на postgresql, greenplum и clickhouse

    На pgconf’17 я рассказывал про нашу велосипедную систему аналитики на основе PostgreSQL. После этого мы посматривали в сторону хадупов, s3, престо, друидов, вертики, пентахо и прочих страшил. А потом перестали cтрадать и сомневаться и просто добавили к постгресу готовые Greenplum и Clickhouse. Получив в итоге потрясающую скорость, простую миграцию, простое обслуживание, надежность и горизонтальное масштабирование, восстановление после сбоев в две команды, уменьшение костов на инфрастуктуру и широкие функциональные возможности за счет сочетания ANSI SQL, MPP и In-memory. Оставаясь в парадигме Open-source и полноценного SQL. В итоге у нас получилось то, что мы назвали GreenHouseSQL - наша внутренняя платформа данных полного цикла. В докладе вскроем простоту внутренностей решения и рассмотрим компоненты стека под микроскопом, расскажем об их достоинствах и недостатках, фишках начала работы с Greenplum, зачем нам Clickhouse, что осталось PostgreSQL'у и как вообще все это работает.

  • Джошуа Дрейк
    Джошуа Дрейк Command Prompt, Inc. Ведущий консультант
    180 мин

    Производительность и эксплуатация Postgres

    Когда вы оптимизируете Postgres, обычно вопросы эксплуатации оказываются задвинуты на обочину. Каким образом наладить autovacuum? Почему bloat? Из-за чего я получаю IO spikes? Как мне заставить RDS правильно себя вести?! Почему коммиты при репликации происходят так медленно? Ответ на все эти вопросы лежит в понимании взаимосвязи между надлежащей эксплуатацией Postgres и его производительностью. Приглашаю присоединиться к увлекательному 3-часовому путешествию по хитрому миру отладки Postgres!

  • Степан Данилов
    Степан Данилов РТ Лабс Разработчик
    22 мин

    Оптимизация оптимизированного и не очень

    Хочу поделиться опытом оптимизации запросов PostgreSQL для Региональной Медицинской Информационной Системы (РМИС). Опыт работы с PostgreSQL и с этой системой - более 6 лет.