title

text

Артемий Рябинков
Артемий Рябинков Avito Software Engineer
17:00 06 февраля
22 мин

Практики, особенности и нюансы при работе с Postgres в Go

В докладе расскажу о практиках работы с Postgres в сервисах на Go. Поговорим о преимуществах и недостатках основных инструментов, которые принято использовать при работе с Postgres в Go. Конечно, коснёмся нюансов, которые нужно учитывать, когда ваши сервисы работают внутри Kubernetes облака. Также расскажу об опыте Avito в предоставлении базы данных разработчикам продукта. Доклад будет интересен разработчикам, которые хотят избежать проблем при работе с Postgres и полезен DBA, которые хотят узнать с какими трудностями сталкиваются клиенты их базы данных.

Слайды

Видео

Другие доклады

  • Денис Смирнов
    Денис Смирнов КГБУЗ КДЦ Вивея программист
    45 мин

    Greenplum: внутреннее устройство MPP PostgreSQL для аналитики

    PostgreSQL архитектурно является классической вертикально-масштабируемая СУБД для OLTP нагрузок. Параллельно с PostgreSQL много лет существует его альтернативная горизонтально-масштабируемая MPP версия Greenplum, заточенная под большие данные и OLAP нагрузку. В докладе будет рассказано про внутреннее устройство Greenplum (распределенные транзакции, шардирование данных, секционирование с гибридным хранением во внешних системах, колоночные движки хранения со сжатием и много другое), проведено сравнение с внутренним устройством PostgreSQL и показаны области применения каждого решения.

  • Мирослав Шедиви
    Мирослав Шедиви solute GmbH Senior Software Developer
    90 мин

    Асинхронный Python и PostgreSQL с использованием asyncpg

    Возможно, Python не самый быстрый язык программирования на CPU, но быстрая и простая разработка на нем экономит массу усилий того, кто находится между креслом и клавиатурой. Поскольку программные клиенты базы данных большую часть времени находятся в ожидании отклика от сервера базы данных, аснихронная функциональность Python, ставшая доступной в последних версиях (3.5+), может оказаться полезной для значительной оптимизации скорости работы приложения за счет того, что время подготовки ответа сервером может быть использовано приложением для работы над другими задачами. Асинхронный интерфейс между Python и PostgreSQL называется "asyncpg". В ходе мастер-класса я разберу работу с данной библиотекой и напишу короткое приложение, использую некоторые полезные свойства библиотеки.

  • Павел Молявин
    Павел Молявин 2ГИС Инженер Инфраструктуры
    45 мин

    Готовим PostgreSQL в эпоху DevOps. Опыт 2ГИС

    После перехода к микросервисной архитектуре для PostgreSQL наступили «темные времена». Каждая из десяти команд действовала самостоятельно — ставила свою базу данных, выбирала версию, писала деплои. Пришло время создать общий инструмент.

    Мы собрали кластер на основе PostgreSQL, repmgr, PgBouncer, Barman. Несмотря на то, что система получилась достаточно сложной для неподготовленного специалиста, нам удалось создать повторяемый деплой, который позволяет быстро разворачивать рабочую систему. А также мы смогли консолидировать все базы в нескольких кластерах и снять с команд обязанности по администрированию.

    Failover работает, мы проверяли :-)

  • Александр Шелудченков
    Александр Шелудченков ГК "Митра" Программист
    22 мин

    Нестандартный кластер 1C

    • Перенос стандартного кластера 1С в MPI окружение - "миграция сервисов между машинами".
    • Перенос postgreSQL на GPU.