title

text

Артемий Рябинков
Артемий Рябинков Avito Software Engineer
17:00 06 февраля
22 мин

Практики, особенности и нюансы при работе с Postgres в Go

В докладе расскажу о практиках работы с Postgres в сервисах на Go. Поговорим о преимуществах и недостатках основных инструментов, которые принято использовать при работе с Postgres в Go. Конечно, коснёмся нюансов, которые нужно учитывать, когда ваши сервисы работают внутри Kubernetes облака. Также расскажу об опыте Avito в предоставлении базы данных разработчикам продукта. Доклад будет интересен разработчикам, которые хотят избежать проблем при работе с Postgres и полезен DBA, которые хотят узнать с какими трудностями сталкиваются клиенты их базы данных.

Слайды

Видео

Другие доклады

  • Денис Смирнов
    Денис Смирнов КГБУЗ КДЦ Вивея программист
    45 мин

    Greenplum: внутреннее устройство MPP PostgreSQL для аналитики

    PostgreSQL архитектурно является классической вертикально-масштабируемая СУБД для OLTP нагрузок. Параллельно с PostgreSQL много лет существует его альтернативная горизонтально-масштабируемая MPP версия Greenplum, заточенная под большие данные и OLAP нагрузку. В докладе будет рассказано про внутреннее устройство Greenplum (распределенные транзакции, шардирование данных, секционирование с гибридным хранением во внешних системах, колоночные движки хранения со сжатием и много другое), проведено сравнение с внутренним устройством PostgreSQL и показаны области применения каждого решения.

  • Александр Коротков
    Александр Коротков Postgres Professional Руководитель разработки
    45 мин

    Что PostgreSQL 12 нам готовит?

    "Заморозка разработки" (feature freeze) PostgreSQL 12 запланирована на апрель 2019, который ещё не настал. Но контуры будущего релиза уже проступают. В данном доклае я расскажу о том, что уже попало в PostgreSQL 12, а также о том что с большой вероятностью может туда попасть. С особым пристрастием расскажу про SQL/JSON, Merge, pluggable table access methods и zheap.

  • Мирослав Шедиви
    Мирослав Шедиви solute GmbH Senior Software Developer
    45 мин

    Битемпоральность: отслеживание воспроизводимых изменений в PostgreSQL с помощью типа данных RANGE

    Итак, вы наконец создали модель базы данных для вашего приложения и наполнили ее текущими данными. Каким образом обеспечить их актуальность? Хотя команда INSERT может быть все еще прозрачной, команды UPDATE и DELETE перезапишут ваши предыдущие данные, так что вы не сможете их воспроизвести. Клонирование целиком огромного контента при каждом небольшом обновлении - не вариант. Для богатых и сложных данных о сотнях тысяч электрогенераторов в Германии и по всему миру я построил базу данных, используя тип данных range, недавно появившийся в PostgreSQL. Это позволило мне добавлять, обновлять и удалять данные, при том обладая полным доступом к состоянию базы данных в любой исторический момент. Во время выступления я представлю очень упрощенную версию базы данных, чтобы аудитория смогла тут же применить знания на практике. Также я покожу несколько хитрых приемов в работе с Python и Psycopg2, которые позволят всей команде подготавливать, просматривать и развертывать все изменения в базе данных без конфликтов слияния. И подкину несколько идей о том, как можно эти данные эффективно извлекать.

  • Александр Кузьменков
    Александр Кузьменков Postgres Professional Программист
    45 мин

    Новые планы выполнения запросов в PostgreSQL 11 и будущих версиях

    Одна из важных задач СУБД -- по декларативному SQL-запросу построить эффективный план его выполнения, используя разные алгоритмы сканирования и объединения таблиц. Над улучшением планирования запросов идёт непрерывная работа. Какие методы применяет PostgreSQL, чтобы получить эффективный план, что нового в этой области в версии 11, и что сейчас находится в разработке? Например, при планировании запроса можно удалять ненужные соединения, или сводить внешние и полусоединения к внутренним. Есть патчи, позволяющие выполнять merge join по пересечению интервалов, или улучшающие оценку селективности соединения с помощью многоколоночной статистики. Если говорить о сканировании отдельных таблиц, покрывающие индексы позволяют чаще использовать index-only scan. Инкрементальная сортировка и более точная оценка стоимости сортировки улучшают планы, где нужен сортированный вывод, например, для GROUP BY и ORDER BY или merge join. Мы обсудим эти и другие подобные оптимизации, которые уже реализованы или находятся в разработке.